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Abstract—Power-hungry data centers face an urgent pressure
on reducing the energy cost. The existing efforts, despite being
numerous, have primarily centered around owner-operated data
centers (e.g., Google), leaving another critical data center segment
— colocation data center (e.g., Equinix) which rents out physical
space to multiple tenants for housing their own servers — much
less explored. Colocations have a major barrier to achieve cost
efficiency: server power management by individual tenants is
uncoordinated. This paper proposes RECO (REward for COst
reduction), which shifts tenants’ power management from unco-
ordinated to coordinated, using financial reward as a lever. RECO
pays (voluntarily participating) tenants for energy reduction
such that the colocation operator’s overall cost is minimized.
RECO incorporates the time-varying operation environment (e.g.,
cooling efficiency, intermittent renewables), addresses the peak
power demand charge, and also proactively learns tenants’
unknown responses to the offered reward. RECO includes a new
feedback-based online algorithm to optimize the reward without
far future offline information. We evaluate RECO using both
scaled-down prototype experiments and simulations. Our results
show that RECO is “win-win” and can successfully reduce the
colocation operator’s overall cost, by up to 27% compared to
the no-incentive baseline case. Further, tenants receive financial

rewards (up to 15% of their colocation costs) for “free” without
violating Service Level Agreements.

I. INTRODUCTION

Power-hungry data centers have been quickly growing to

satiate the exploding information technology (IT) demands.

In the U.S., electricity consumption by data centers in 2013

reached 91 billion kilo-watt hours (kWh) [34]. The rising

electricity price has undeniably placed an urgent pressure

on optimizing data center power management. The exist-

ing efforts, despite numerous, have centered around owner-

operated data centers (e.g., Google), leaving another data

center segment — colocation data center (e.g., Equinix) —

much less explored.

Colocation data center, simply called “colocation” or “colo”,

rents out physical space to multiple tenants for housing their

own physical servers in a shared building, while the colocation

operator is mainly responsible for facility support (e.g., power,

cooling). Thus, colocation significantly differs from owner-

operated data centers where operators fully manage both IT

resources and data center facilities.

Colocation offers a unique data center solution to a wide

range of tenants (as shown in Fig. 1), including financial

industries, medium cloud providers (e.g., Salesforce) [12],

[33], top-brand websites (e.g., Wikipedia) [1], content delivery

providers (e.g., Akamai) [33], and even gigantic firms such as

Amazon [8]. The U.S. alone has over 1,200 colocations, and

many more are being constructed [13]. According to a Google

study [10], “most large data centers are built to host servers

from multiple companies (often called colocation, or ‘colos’).”

Fig. 1: (a) Estimated electricity usage by U.S. data centers

in 2011 (excluding small server closets and rooms) [34]. (b)

Colocation revenue by vertical market [14].

The global colocation market, currently worth U.S.$25 billion,

is projected to U.S.$43 billion by 2018 [3]. Excluding tiny-

scale server rooms/closets, colocation consumes 37% of the

electricity by all data centers in the U.S. (see Fig. 1), much

more than hyper-scale cloud data centers (e.g., Amazon) which

only take up less than 8%. Hence, it is at a critical point to

make colocations more energy-efficient and also reduce their

electricity costs. Towards this end, however, there is a barrier

as identified below: “uncoordinated” power management.

A vast majority of the existing power management tech-

niques (e.g., [28], [47]) require that data center operators have

full control over IT computing resources. However, colocation

operator lacks control over tenants’ servers; instead, tenants

individually manage their own servers and workloads, without

coordination with others. Furthermore, the current pricing

models that colocation operator uses to charge tenants (e.g.,

based on power subscription [15], [35]) fail to align the ten-

ants’ interests towards reducing the colocation’s overall cost.

We will provide more details in Section II-B. Consequently,

colocation operator incurs a high energy consumption as well

as electricity cost.

In this paper, we study a problem that has been long

neglected by the research community: “how to reduce the

colocation’s operational expense (OpEx)?” Throughout the

paper, we also use “cost” to refer to OpEx wherever applicable.

Because of the uniqueness of multi-tenant colocation, our work

is distinctly different from a majority of the prior research that

concentrates on owner-operated data centers (e.g., Google). We

propose RECO (REward for COst reduction), using financial

reward as a lever to shift power management in a colocation

from uncoordinated to coordinated. RECO pays participating

tenants for energy saving at a time-varying reward rate ($ per



kWh reduction) such that the colocation operator’s overall

cost (including electricity cost and rewards to tenants) is

minimized. RECO has a voluntary nature, without enforcing

tenants to participate. Next, we highlight key challenges for

optimizing the reward rate offered to tenants.

Time-varying operation environment. Outside air tempera-

ture changes over time, resulting in varying cooling efficiency.

Further, on-site solar energy, if applicable, is also highly

intermittent, thus calling for a dynamic reward rate to best

reflect the time-varying operation environment.

Peak power demand charge. Peak power demand charge,

varied widely across utilities (e.g., the maximum power de-

mand measured over each 15-minute interval), may even take

over 40% of colocation operator’s total electricity bill [31],

[45], [49]. Nonetheless, peak power demand charge cannot be

perfectly known until the end of a billing cycle, whereas the

colocation operator needs to dynamically optimize reward rate

without complete offline information.

Tenants’ unknown responses to rewards. Optimizing the

reward rate offered to incentivize tenants’ energy reduction

requires the colocation operator to know how tenants would

respond. However, tenants’ response information is absent in

practice and also time-varying.

RECO addresses the above challenges. It models time-

varying cooling efficiency based on outside ambient tem-

perature and predicts solar energy generation at runtime.

To tame the peak power demand charge, RECO employs a

feedback-based online optimization by dynamically updating

and keeping track of the maximum power demand as a runtime

state value. If the new (predicted) power demand exceeds the

current state value, then additional peak power demand charge

would be incurred, and the colocation operator may need to

offer a higher reward rate to incentivize more energy reduction

by tenants. RECO also encapsulates a learning module that

uses a parametric learning method to dynamically predict how

tenants respond to colocation operator’s reward.

We evaluate RECO using both scaled-down prototype ex-

periments and simulations. Capturing a small-scale multi-

tenant environment, our prototype experiment demonstrates

that RECO is “win-win” and reduces the cost by over 10%

compared to no-incentive baseline, while tenants receive fi-

nancial rewards for “free” without violating their respective

Service Level Agreements (SLA). Complementing the ex-

periment, our simulation shows that RECO can reduce the

colocation operator’s overall cost by up to 27% compared to

the no-incentive baseline case. Moreover, using RECO, tenants

can reduce their costs by up to 15%. We also subject RECO

to a varying environment, showing that RECO can robustly

adapt to changes in tenants’ responses.

To sum up, our key contribution is uniquely identifying and

formulating the problem of reducing colocation’s operational

cost, which has not been well addressed by prior research.

We also propose RECO as a lever to overcome uncoordinated

power management and effectively reduce colocation’s overall

cost, as demonstrated using prototype experiments and simu-

lations.

Data Center Power Utility Demand Energy Demand Charge

Location (Rate Schedule) Charge Charge (% of total)

Phoneix, AZ APS (E-35) 186,400 253,325 42.39%
Ashburn, VA Dominion (GS-4) 153,800 207,360 42.59%
Chicago, IL ComED (BESH) 110,000 276,480 28.46%
San Jose, CA PG&E (E-20) 138,100 332,398 29.35%
New York, NY ConEd (SC9-R2) 314,400 1,099,008 22.24%

TABLE I: A 10MW data center’s electricity cost for selected

locations (in U.S. dollars).

II. PRELIMINARIES

A. Peak power demand charge

As a large electricity customer, colocation operator is

charged by power utilities not only based on energy con-

sumption, but also based on peak power demand during a

billing cycle, and such peak power demand charge is widely

existing (e.g., all the states in the U.S.) [31], [40], [45], [49].

Peak power demand charge is imposed to help power utilities

recover their huge investment/costs to build and maintain

enough grid capacities for balancing supply and demand at

any time instant. The specific charge for peak power demand

varies by power utilities. For example, some are based on the

maximum power measured over each 15-minute interval, while

others are based on two “peak power demands” (one during

peak hours, and the other one during non-peak hours).

Next, we consider a data center with a peak power demand

of 10MW and an almost “flat” power usage pattern (by scaling

UPS-level measurements at Verizon Terremark’s NAP data

center during September, 2013, shown in Fig. 2). Table I shows

the data center’s monthly cost for selected U.S. data center

markets. It can be seen that, as corroborated by prior studies

[31], [45], [49], peak power demand charge can take up over

40% of the total energy bill, highlighting the importance of

reducing the peak power demand for cost saving.

B. Limitations of colocation’s current pricing models

There are three major pricing models in colocations [15],

[17], as shown below. Pricing for bandwidths and other

applicable add-on services is not included.

Space-based. Some colocations charge tenants based on

their occupied room space, although space-based pricing is

getting less popular due to increasing power costs [15], [17].

Power-based. A widely-adopted pricing model is based on

power subscription regardless of actual energy usage (i.e., the

amount of power reserved from the colocation operator before

tenants set up their server racks, not the actually metered peak

power). In the U.S., a fair market rate is around 150-200$/kW

per month [11], [17], [44].

Energy-based. Energy-based pricing charges tenants based

on their actual energy usage and is indeed being adopted

in some colocations [15], [17]. This pricing model is more

common in “wholesale” colocations serving large tenants, typ-

ically each having a power demand in the order of megawatts.

In addition to energy usage, tenants are also charged based

on power subscription (but usually at a lower rate than pure

power-based pricing), because colocation operator needs to

provision expensive facility support (e.g., cooling capacity,



Fig. 2: Normalized power consumption of Verizon Terremark’s

colocation in Miami, FL, measured at UPS output from

September 15–17, 2013.

power distribution) based on tenants’ power reservation to

ensure a high reliability.

Clearly, under both space-based and power-based pricing,

tenants have little incentive to save energy. We show in Fig. 2

the power consumption of Verizon Terremark’s colocation in

Miami, FL, measured at the UPS output (excluding cooling

energy) from September 15–17, 2013, and further normalized

with respect to the peak IT power to mask real values. Verizon

Terremark adopts a power-based pricing [44]. It can be seen

that the measured power is rather flat, because of two reasons:

(1) tenants’ servers are always “on”, taking up to 60% of the

peak power even when idle [10]; and (2) the average server

utilization is very low, only around 10-15%, as consistent with

other studies [21], [29], [34].

Even under energy-based pricing, tenants still have no

incentives to coordinate their power management for reduc-

ing colocation operator’s electricity cost. For example, with

intermittent solar energy generation available on-site (which

is becoming widely popular [9], [18]), the colocation operator

desires that tenants defer/schedule more workloads to times

with more solar energy (i.e., “follow the renewables”) for

maximizing the utilization of renewables and reducing the

cost, but tenants have no incentives to do so. For illustration

purposes, we consider a hypothesis scenario by supposing that

Verizon Terremark employs energy-based pricing. We extract

the variations in measured power usage, and then scale the

variations to demonstrate the situation that tenants are saving

their energy costs via energy reduction (e.g., “AutoScale”

used in Facebook to dynamically scale computing resource

provisioning [47]). Fig. 2 shows that the intermittent solar

power may be wasted (shown as shaded area), because of

the mis-match between solar availability and tenants’ power

demand. Further, tenants do not have incentives to avoid

coinciding their own peak power usage with others, potentially

resulting in a high colocation-level peak power usage.

Note that it is not plausible to simply adopt a utility-type

pricing model, i.e., tenants are charged based on “energy us-

age” and “metered peak power” (not the pre-determined power

subscription). While this pricing model encourages certain

tenants to reduce energy and also flatten their own power

consumption over time, some tenants (e.g., CDN provider

Akamai) have time-varying delay-sensitive workloads that

cannot be flattened. Further, time-varying cooling efficiency

and intermittent solar energy, if applicable, desire a power

consumption profile (e.g., “follow the renewables”) that may

not be consistent with this pricing model.

To sum up, to minimize colocation operator’s total cost, we

need to overcome the limitations associated with the current

pricing models in colocations and dynamically coordinate

power management among individual tenants.

III. MECHANISM AND PROBLEM FORMULATION

This section presents RECO, using reward as a lever for

coordinating tenants’ power consumption. We first describe the

mechanism and then formalize the cost minimizing problem.

A. Mechanism

Widely-studied dynamic pricing (e.g., in smart grid [32]) en-

forces all tenants to accept time-varying prices and hence may

not be suitable for colocations where tenants sign long-term

contracts [51]. Here, we advocate a reward-based mechanism:

first, colocation operator proactively offers a reward rate of r

$/kWh for tenants’ energy reduction; then, tenants voluntarily

decide whether or not to reduce energy; last, participating

tenants receive rewards for energy reduction (upon verification

using power meters), while non-participating tenants are not

affected.

When offered a reward, participating tenants can apply vari-

ous energy saving techniques as studied by prior research [19],

[28], [47]. For example, a tenant can estimate its incoming

workloads and then dynamically switch on/off servers subject

to delay performance requirement. This technique has been

implemented in real systems (e.g., Facebook’s AutoScale [47])

and is readily available for tenants’ server power management.

B. Problem formulation

We consider a discrete-time model by dividing a billing

cycle (e.g., one month) into T time slots, as indexed by

t = {0, 1, · · · , T − 1}. We set the length of each time slot

to match the interval length that the power utility uses to

calculate peak power demand (e.g., typically 15 minutes) [5],

[31], [45], [49]. At the beginning of each time slot, colocation

operator updates the reward rate r(t) for energy reduction

(with a unit of dollars/kWh). Then, tenants voluntarily decide

if they would like to reduce energy for rewards. As discussed

in Section IV-C, the amount of energy reduction by a tenant

during a time slot is measured by comparing with a pre-set

reference value for that tenant.

We consider a colocation data center with N tenants. At any

time slot t, for a reward rate of r(t), we denote the total energy
reduction by tenants as ∆E(r(t), t), where the parameter t in
∆E(·, t) indicates that the tenants’ response to offered reward
is time-varying (due to tenants’ changing workloads, etc.). We

denote the reference energy consumption by tenant i as eoi (t).
Thus, the total energy consumption by tenants’ servers at time

t can be written as

E(r(t), t) =

N
∑

i=1

eoi (t)−∆E(r(t), t). (1)

Considering electricity price of u(t), power usage effec-

tiveness of γ(t) (PUE, ratio of total data center energy to



IT energy) and solar energy generation of s(t), colocation
operator’s electricity cost and reward cost at time slot t are

Cenergy(r(t), t) = u(t) · [γ(t) · E(r(t), t) − s(t)]+ ,(2)

Creward(r(t), t) = r(t) ·∆E(r(t), t), (3)

where [ . ]+ = max{ . , 0} indicates that no grid power

will be drawn if solar energy is already sufficient. Following

the literature [31], we consider a zero-cost for generating solar

energy, but (2) is easily extensible to non-zero generation cost.

The colocation pays for its peak energy demand during

a billing cycle. Power utilities may impose multiple peak

demand charges, depending on time of occurrence. For J types

of peak demand charges, we use Aj for j = {1, 2, · · · , J}
to denote the set of time slots during a day that falls under

time intervals related to the j-th type of demand charge.

Utilities measure peak demand by taking the highest of the

average power demand during pre-defined intervals (usually

15 minutes) over the entire billing period. We write the peak

demand charge as follows

Cdemand =

J
∑

j=1

dj ·
maxt∈Aj

[γ(t) · E(r(t), t) − s(t)]
+

∆t
, (4)

where E(r(t), t) is servers’ energy consumption given in (1),

∆t is the duration of each time slot, and dj is the charge for

type-j peak demand (e.g., ∼ 10$ per kW [31], [40], [49]).

Next, we present the colocation operator’s cost minimizing

problem (denoted as P-1) as follows

min
T−1
∑

t=0

[Cenergy(r(t), t) + Creward(r(t), t)] + Cdemand.

Solving P-1 and obtaining the optimal reward rate r(t) faces
unknown and uncertain offline information. First, cooling

efficiency (which significantly affects PUE) and solar energy

generation both vary with the outside environment. Second, the

total cost contains demand charge which is only determined

after a billing cycle. Last but not least, tenants’ response to

reward (i.e., how much energy tenants reduce) is unknown.

The next section will address these challenges.

IV. RECO: REDUCING COST VIA REWARDS

This section presents how RECO copes with three major

technical challenges in optimizing the reward: time-varying

environment, peak power demand charge that will not be

perfectly known until the end of a billing cycle, and tenants’

unknown responses. Then, we show the algorithm for execut-

ing RECO at runtime.

A. Modeling cooling efficiency and solar energy

Now, we provide details for modeling time-varying cooling

efficiency and predicting on-site solar energy generation.

Cooling efficiency. Cooling energy is a non-trivial part of

data center’s total energy usage [48]. Data centers, including

colocations, may improve cooling energy efficiency using air-

side economizer (i.e., outside cold air for cooling).
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Fig. 3: (a) pPUE variation with outside ambient temperature

[16], [48]. (b) Snapshot of weekly pPUE during Summer and

Winter in San Francisco, CA, in 2013.

As a concrete example, we model the cooling energy

efficiency based on a commercially-available cooling system

manufactured by Emerson Network Power [16], [48]. This

cooling system operates in three different modes: pump, mixed

and compressor. Given a return air temperature of 85oF , it
runs in the pump mode for ambient temperature lower than

50oF . It runs in the mixed mode for ambient temperature

between 50oF and 60oF , and in the compressor mode when

ambient temperature exceeds 60oF . Based on manufacture-

reported measurements, we model partial PUE (pPUE) as1

pPUE = 1.6576× 10−5θ2 + 0.0018599θ+ 0.98795, (5)

where θ is the ambient temperature in Fahrenheit [16], [48].

Then, runtime overall PUE γ(t) can be calculated by including
pPUE and the fraction of other non-IT power consumption

(e.g., energy loss in power supply). The measured data points

and fitted model are shown in Fig. 3a, while the pPUE

calculated using (5) is shown in Fig. 3b for a snapshot of

outside air temperature in San Francisco, CA.

Solar energy. On-site solar energy, a popular form of re-

newable energy, has been increasingly adopted by colocations

(e.g., Equinix). Here, we consider that the colocation has

photovoltaic (PV) panels to harvest solar energy on-site.

Solar energy generation is intermittent and depends on solar

irradiance and weather conditions. Recent literature [24] shows

that autoregressive moving average (ARMA) model based on

historic data can predict solar generation with a reasonable

accuracy.

We only require short-term solar energy prediction (as

shown in Section IV-D). Thus, as an example, we use ARMA-

based prediction method because of its lightweight imple-

mentation and good accuracy [24]. Specifically, our ARMA

model is built with sum of weighted auto-regressive (AR)

and moving-average (MA) terms. The predicted solar gen-

eration at time slot t using ARMA can be expressed as

s′(t) =
p
∑

i=1

Ai · s
′(t − i) +

q
∑

j=1

Bj · ε(t − j), where s′(t) is

the predicted solar energy, ε(t − j) is white noise with zero

mean, p and q are the orders, and Ai and Bj are the weight

parameters learned a priori. In Fig. 4a, we show predicted and

actual solar generation of 7 days based on solar energy data

from California ISO [4]. In the prediction, we have a Mean

1pPUE is defined as
PowerIT +PowerCooling

PowerIT
, without including other

non-IT power consumption such as losses in power supply system.
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Fig. 4: (a) Solar prediction with ARMA. Model parameters:

p = 2, q = 2, (A1, A2) = (1.5737,−0.6689) and (B1, B2) =
(0.3654,−0.1962). (b) Periodogram for different workloads

using FFT.

Absolute Error (MAE) of 18kW, which is less than 2.5% of

the considered peak generation of 750kW. More sophisticated

models, e.g., incorporating weather forecast [39], can improve

prediction and be plugged into RECO for areas where solar

generation is not as regular as California.

B. Tracking peak power demand

The peak power demand is determined at the end of a billing

cycle, and hence it cannot be perfectly known at runtime. To

address this, we propose to keep track of the peak power

demand value, denoted by Qj(t), which indicates the j-th

type of peak power demand up to the beginning of time slot t.

Intuitively, if the new power demand in the upcoming time slot

is expected to exceed Qj(t), the colocation operator needs to
offer a higher reward rate to better encourage tenants’ energy

saving for reducing demand charge.

The colocation operator updates Qj(t) online, if time t

belongs to the time interval for type-j peak power demand, as

follows

Qj(t+ 1) = max

[

[γ(t) · E(r(t), t) − s(t)]+

∆t
, Qj(t)

]

, (6)

where
[γ(t)∗E(r(t),t)−s(t)]+

∆t
is the average power demand dur-

ing time t. We initialize Qj(0) using an estimated peak power
demand for the upcoming billing cycle (e.g., based on the

peak demand of the previous cycle). The tracked peak power

demandQj(t) serves as a feedback value to determine whether
it is necessary to offer a high reward rate to tame the peak

power demand.

C. Learning tenants’ response to reward

Naturally, optimizing the reward rate r(t) requires the

colocation operator to accurately predict how tenants would

respond to the offered reward, but tenants’ response informa-

tion is absent in practice. To address this challenge, we propose

a learning-based approach that predicts how tenants respond

to the offered reward based on history data. We model the

tenants’ aggregate response (i.e., aggregate energy reduction)

using a parameterized response function ∆E(r): if offered

a reward rate of r $/kWh, tenants will aggregately reduce

servers’ energy consumption by ∆E(r). We will explain the

choice of ∆E(r) for tenants’ response in Section VI-B.

Tenants’ energy reduction naturally depend on their SLA

constraints, and thus varies with workloads. However, IT

Algorithm 1 RECO-LTR: Learning Tenants’ Response

1: Input: Set of previous I observations X ′ = {(r′i, y
′

i) :
r′i and y′i are reward and energy reduction in observation i}
for i = 1, 2, · · · I (larger index represents older data);

new observation (r0, y0)
2: Set X = {(r0, y0), (r

′

i, y
′

i) : i = 1, 2, · · · , I − 1}
3: Update parameters for response function ∆E(r) to mini-

mize
∑I−1

i=0 (yi −∆E(ri))
2

workload exhibits diurnal patterns, which can be leveraged

to greatly reduce the learning complexity. To validate this

point, in Fig. 4b, we show the periodogram of time-series

data of four different real-life workload traces (also used in

our simulations) using Fast Fourier Transform (FFT). The peak

at 24 hours indicates that workloads have a strong correlation

over each 24 hours (i.e., daily repetition of workload). Thus,

the colocation operator can just learn the diurnal response

function: assume that the response functions for the same

time slot of two different days are the same, and then update

it incrementally at runtime. That is, if there are K time

slots in a day, the colocation operator learns K different

response functions, and we denote them as ∆Ek(r) where

k = {0, 1, · · · ,K − 1}.

We employ non-linear curve fitting based on least square

errors to learn the response function. We use a sliding win-

dow with a predetermined number of previous observations

(i.e., energy reduction and reward) to determine the unknown

parameters in our parameterized response function. At the

end of a time slot, the new observation replaces the oldest

one, thus avoiding using too old information. RECO-LTR

(RECO-Learning Tenants’ Response) in Algorithm 1 presents

our curve fitting algorithm to update the response function

online. In our simulation, Fig. 13b demonstrates that the

proposed learning-based method can reasonably accurately

learn tenants’ response over time.

We next note that as in typical incentive-based approaches

(e.g., utility incentive programs [43]), a reference usage for the

no-reward case needs to be chosen in order to calculate each

tenant’s energy reduction. Thus, when the colocation operator

announces reward rate r, it also notifies each participating

tenant of its reference energy usage, such that tenants can

determine on their own whether and how much energy to

reduce. In our study, we can set reference usage based on

tenants’ energy consumption history (when no reward was

offered) and/or calculate the diurnal reference energy usage

based on the learnt response function evaluated at zero reward.

D. Feedback-based online optimization

We break down the original offline problem P-1 into an

online optimization problem (denoted as P-2). Specifically, we

remove the total demand charge part and replace it with the

cost increase associated with increase in peak power demand

(hence demand charge). The new objective is to optimize



Algorithm 2 RECO

1: Initialize: For t = 0, ∀j set Qj(0) = P o
j , where P

o
j is the

estimated type-j peak power demand based on previous

billing cycle or expectation.

2: while t ≤ T − 1 do

3: Input: Electricity price u(t) and predicted solar gener-
ation s′(t).

4: Optimize: Solve P-2 to find r(t).
5: Measurement: Measure energy reduction ∆E(r(t), t)

(based on reference usage), and solar generation s(t).
6: Update peak power demand: For all j ∈ Aj , update

Qj(t) according (6).
7: Update tenants’ response function: Using

RECO-LTR (Algorithm 1), update ∆Ek(r) with

{r(t),∆E(r(t), t)}, where k = t mod K .

8: t = t+ 1
9: end while

reward rate r(t) for minimizing

P-2: Cenergy(r(t), t) + Creward(r(t), t)

+
∑

j

dj ·

[

γ(t) · E(r(t), t) − s′(t)

∆t
−Qj(t)

]+

· It∈Aj
,

(7)

where Cenergy(r(t), t) and Creward(r(t), t) are the energy

cost and reward cost given by (2) and (3), respectively,
[

γ(t)·E(r(t),t)−s′(t)
∆t

−Qj(t)
]+

indicates whether the new (pre-

dicted) power demand during t will exceed the currently

tracked value of Qj(t) for type-j demand charge, and It∈Aj

is the indicator function equal to one if and only if time t falls

into the time interval Aj for type-j demand charge (defined

by the power utility).

We formally describe the feedback-based online optimiza-

tion in Algorithm 2. At the beginning of each time slot,

RECO takes the tracked peak power demand, electricity price

u(t), predicted tenants’ response function and solar generation
s′(t) as inputs, and yields the reward rate r(t) $/kW by

solving P-2. At the end of each time slot, RECO updates the

peak demand queues Qj using the actual power consumption.

RECO also records the actual response of the tenants to

the reward ∆E(r, t), and updates the corresponding response

function using RECO-LTR with the new observation. The

whole process is repeated until the end of a billing cycle.

We show the system diagram of implementing RECO

in Fig. 5. On the colocation operator side, RECO can be

implemented as a complementary/additional control module

alongside any existing control systems (e.g., cooling control).

Tenants, on the other hand, only need a very lightweight

software to communicate with the operator for receiving the

reward rate online. Upon receiving the reward information,

tenants can decide at their own discretion whether and how to

reduce energy subject to SLA for rewards.

Fig. 5: System diagram of RECO.

V. EXPERIMENT

This section presents a prototype to demonstrate that RECO

can effectively reduce colocation’s cost by more than 10%.

We show that the tenants can save their colocation rental cost

without violating SLAs, while the colocation can save on both

energy and demand charges. We first describe our colocation

test bed, and then present the experiment results.

A. Colocation test bed

1) Hardware.: We build a scaled-down test bed with five

Dell PowerEdge R720 rack servers. Each server has one Intel

Xeon E5-2620 Processor with 6-cores, 32GB RAM and four

320 GB hard drives in RAID 0 configuration. One server

(called “I/O Server”) is equipped with a second processor and

four additional hard disks, and used to host the database VMs.

We use Xen Server 6 as the virtualization platform and Ubuntu

Server 12.04.4 as the hosted operating system in each VM. As

a rule of thumb, we allocate at least one physical core to each

VM. We use a separate HP tower server to implement RECO

and communicate with tenants using Java sockets. WattsUp

Pro power meters are used to monitor power consumption of

the tenants’ Dell PowerEdge servers.

2) Tenants.: We have two tenants in our prototype, one

running delay-tolerant Hadoop jobs and the other one pro-

cessing key-value store (KVS) workload which resembles a

realistic multi-tiered website such as social networking. The

Hadoop system is built on 12 VMs hosted on 2 servers. We

configure 11 worker nodes and 1 master node for the Hadoop

system. A custom control module is used to consolidate

and/or reconfigure the Hadoop servers to trade performance

for energy. For Hadoop workload, we perform sort benchmark

on randomly generated files of different sizes using Random-

TextWriter (Hadoop’s default).

Our implementation of KVS workloads has four tiers: front-

end load balancer, application, memory cache, and database.

The load balancer receives jobs from the generator and routes

the requests to the application servers. The application tier

processes the key and sends request to back-end database

to get values. The back-end database is implemented in two

tiers: replicated memory cache and database. We use three

Memcached VMs and three database VMs, and put them in

the I/O server. There are 15 application VMs in total (12 on

two application servers and the other three on the I/O server).

There are 100 million key-value entries in the database, and
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Fig. 7: Processing capacity under different power states.

each key-value request returns multiple keys and the process

repeats until the exit condition (e.g., number of iteration) is

met. The KVS tenant can reconfigure the cluster and switch

off up to two application servers (hosting 12 application VMs)

to reduce energy.

3) Other settings.: We use the workload traces from Mi-

crosoft Research (MSR) as Hadoop workloads, and Gmail

workload traces as KVS workloads [2], [41]. Fig. 6 shows the

workload traces of the tenants normalized to their maximum

processing capacity. Length of each time slot in our experiment

is 15 minutes, and we run the experiment for 192 time slots

(48 hours). We use the electricity price of PG&E [5]. Due to

the relatively short experiment, we consider that RECO has

already learned the response function before the experiment

starts, but we will examine the learning capability of RECO via

simulations. Due to prototype’s limitation, we do not consider

cooling efficiency or availability of solar energy, which will

be incorporated in the simulation section.

B. Tenants’ response

We consider that the Hadoop tenant has a SLA on job’s

maximum completion time of 15 minutes, while the KVS

tenant has a SLA of 500 ms on the 95% delay (as similarly

considered in prior research [19]). Each server is set to have

three power states: high speed (H), low speed (L), and deep

sleep/shut-down (Z). High and low speed settings correspond

to all CPU cores running at 2 GHz and 1.2 GHz, respectively.

There are five combinations of power states for the

Hadoop tenant with two servers, and we index the

power states from 0 to 4: (serverH1, serverH2) =
{(Z,Z), (L,Z), (H,Z), (L,L), (H,H)}. The KVS tenant

with three servers also has five possible power states, because

we keep the database server hosting the Memcached and

database VMs unchanged. The server power state combina-

tions are from the set (serverK1, serverK2, serverK3) =
{(Z,Z,H), (Z,L,H), (Z,H,H), (L,L,H), (H,H,H)}. The
first two servers are application servers and the last one is

the I/O server. Note that, power state 0 corresponds to lowest

speed and thus maximum energy reduction, while power state

4 means the system is running at its maximum capacity.

Fig. 7 shows tenants’ processing capacities subject to SLA
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Fig. 8: Energy consumption under different power states.
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Fig. 9: Response to reward under different workloads.

constraints under different power states. We see that power

state 3 for both tenants has a lower processing capacity but

consumes more power.

In Fig. 8, we show the energy consumption associated with

each power state for different workload. If a certain workload

cannot be processed given a power state, then its energy

consumption at that power state is omitted from the figure.

Fig. 8a shows the energy consumption of the Hadoop tenant

during a time slot. We see that, the same file consumes more

energy when processed in a higher power state, indicating a

waste of energy when the system has a low workload. We

also see that large files (e.g., 4GB) cannot be processed at

low power states because of the SLA constraint. In Fig. 8b,

we show the energy consumption by KVS tenant’s servers

for different request rates. Similar to that of Hadoop tenant,

low request rates can be processed at a low power state with

low energy consumption, while high request rates (e.g., 60

requests/second) require the use of higher power states and

also more energy. The key observation in Fig. 8 is the energy

saving opportunity for processing workloads subject to SLA.

We consider the tenants’ response to rewards in such a way

that it resembles the response used in simulations (detailed in

Section VI-B). Fig. 9 shows the tenants’ response to different

rewards under different workload conditions. Because of less

capacity but more power/energy at power state 3, tenants do

not use this state. We also see that because of SLAs, tenants

cap their energy reduction given high incoming workloads and

do not run their systems in very low power states (thus low

capacity). The KVS tenant can use power state 0 for non-zero

workloads, because it has three application VMs hosted on the

I/O server that is always on.

C. Benchmarks

We consider two benchmarks to compare RECO with.

BASELINE. This is the baseline case where the colocation

adopts a power-based pricing, without using any rewards. The

tenants keep all their servers running.

EPR (Electricity Price-based Reward). In this case, the

colocation directly offers electricity price as reward, without
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Fig. 10: Comparison of different algorithms.
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Fig. 11: Cost and savings under different algorithms.

accounting for time-varying cooling efficiency or solar energy

availability. This is equivalent to energy-based pricing.

D. Experiment result

We first compare the performance of the tenants’ workloads

in Fig. 10. We see that both tenants can reduce energy

without SLA violation, showing the potential of RECO in real-

life systems. In Fig. 10c, we show the energy consumption,

demonstrating that RECO and EPR have a significantly lower

energy consumption compared to BASELINE. In some time

slots, EPR has lower energy consumption than RECO, because

EPR provides a higher reward equal to electricity price.

Throughout the evaluation, we focus on the comparison

of colocation operator’s cost (including energy cost, peak

power demand cost, and reward cost if applicable).2 Fig. 11a

shows the colocation’s total cost for different algorithms. As

we run the experiment for 48 hours, we scale down the

monthly demand charge by PG&E to 48 hours based on a

pro-rated charge. We see that RECO has the lowest total

cost. BASELINE does not incur any reward cost, but has

significantly higher energy and demand costs. EPR has the

lowest energy and demand charges, but gives a significant

portion of the cost saving as reward, thus resulting a total

cost higher than RECO.

In Fig. 11b, we show the total cost savings of the colocation

opeator and tenants by using RECO and EPR compared to

BASELINE. RECO has more than 10% cost saving, and the

Hadoop tenant and KVS tenant save 6.5% and 3.5% of their

colocation rental cost3, respectively. EPR only saves less than

3% of the total cost for the colocation operator, although both

tenants save around 10% of their rental costs.

2We consider the commonly-used power-based pricing as the baseline case,
and RECO is applied on top of this baseline. Hence, the colocation’s revenue,
i.e., tenants’ power-based rent (excluding power-irrelevant bandwidth charges,
etc.), is pre-determined and isolated from our study.

3The rental cost is calculated based on pro-rated for 48 hours with a rental
rate of 147$/kW per month (a fair market rate for colocation service [11]),
considering that Hadoop and KVS tenants have power subscriptions of 240W
and 340W, respectively.

VI. SIMULATION

In this section, we present a trace-based simulation, comple-

menting the prototype experiment. We show that using RECO,

colocation operator can reduce the monthly cost by up to 27%,

while the tenants can get as much as 16% of their monthly

rent as reward. We first present our setup and then results.

A. Setup

We consider a colocation located in San Francisco, Cal-

ifornia (a major market serving Silicon Valley) [13]. The

colocation has 15 tenants, each having 2,000 servers and a

peak power subscription of 500 kW. We collect the traces

from Google, Microsoft, Wikipedia, Verizon Teremark and

University (FIU) as the tenants’ workload traces. In particular,

we take the U.S. traffic data for Google services: Gmail,

Search, Maps and Youtube from [2]. Microsoft traces are

collected from [41], which consist of traces from Hotmail,

Messenger and MSR. The Wikipedia traces are from [42],

and contain traffic for Wikipedia (English). We collect the

Verizon Teremark and University traces through our direct

collaboration with them. Verizon Teremark traces are collected

from multiple flywheel UPS measurements at one of their

colocations, whereas the university trace contains HTTP re-

quests to its website. The workloads are scaled to have a 15%

average server utilization for each tenant, which is consistent

with public disclosure [21], [34]. Note that tenants need to

turn on more servers than the minimum-required capacity,

such that workloads do not overload servers and can satisfy

SLA. We predict the solar energy generation based on the

traces collected from [4] using ARMA, and scale it to have a

peak solar generation of 750 kW (10% of critical peak power

of the colocation). The colocation is connected with PG&E,

and registers as a large commercial customer under PG&E’s

electric schedule E-20 [5]. Besides monthly service charges,

the colocation is subject to peak power demand charge and

energy charge [5]. We collect the temperature data for San

Francisco, CA, from [6] for 2013, and use it to determine the

colocation’s cooling efficiency using (5).

We use a discrete-time simulator, which is a common

evaluation method for research. It simulates the colocation

operator’s decision and tenants’ responses at runtime. The

simulator for colocation operator takes renewable energy and

temperature traces as inputs, executes RECO, and communi-

cates with the tenant simulator using function calls. The tenant

simulator uses workload traces and reward information as

inputs, and outputs the servers’ energy reduction. In each time
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Fig. 12: Tenant response and fitting.

slot, all the decisions (e.g., reward, tenants’ energy reduction)

are logged.

B. Tenants’ response

Upon receiving the reward information, as shown in Fig. 5,

tenants can voluntarily choose their power management, de-

pending on workloads and SLAs. Here, we consider that

tenants will dynamically switch off servers (a variant of

AutoScale being used in Facebook’s production system [47])

while ensuring that their active servers’ utilization will not

exceed 50% for satisfying SLA.

We use Sigmoid function f(r) = a
1+c·e−br for tenants’

response, which exhibits two interesting properties: (1) given a

low reward, tenants are reluctant to commit energy reduction;

and (2) when the energy reduction approaches their maximum

possible amount, tenants become less willing to reduce re-

source provisioning and energy.

To justify our choice of Sigmoid function, we consider two

different cases of tenants’ response to rewards, and show that

the aggregate energy reductions can be approximated using

Sigmoid functions. In the first case, we consider tenants’

threshold-based binary response, where a tenant turns off the

maximum number of servers subject to SLA when the reward

rate is more than a cost threshold. Fig. 12a shows a sample

of responses by three tenants (out of 15) who have different

cost thresholds and SLA constraints. In the second case, we

consider a profit-based response: turning off a server incurs

a switching cost and also performance cost (due to possible

performance degradation), and with the reward information, a

tenant determines the optimal number of servers to turn off to

maximize its net profit following a similar approach in [28].

We show a sample of profit-maximizing responses of three

tenants in Fig. 12c. In both cases, tenants try to maximize

their own net profits, consistent with prior studies that focus

on energy cost saving [30]. From Fig. 12b and 12d, we see that

in both cases, Sigmoid function can be used to estimate the

aggregate response (i.e., total energy reduction by all tenants)

with a high accuracy. Note that while we use Sigmoid function

for evaluation, our methodology also applies to alternative

response functions.
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Fig. 14: Grid power and reward rate w/ different algorithms.

The colocation operator constructs a set of diurnal response

functions, each corresponding to a different time slot of a

day. Fig. 13a shows tenants’ response to different reward rates

for the first time slot of a day. The error bars represent the

deviation of actual response from the learnt/predicted value.

We consider that before simulation begins, the colocation

operator already has the response functions based on one

month’s learning, which is sufficient as we will show later

in Fig. 16 that the colocation can adapt to large changes in

tenants’ responses within one month.

C. Results

Below, we present our results based on the above settings.

We examine the execution of RECO and show the performance

comparison in terms of cost savings. Then, we demonstrate the

applicability of RECO in different scenarios. The simulations

are done for one year and each time slot is 15-minute,

matching PG&E’s peak power demand accounting [5].

1) Performance comparison: The colocation operator min-

imizes the cost by optimally choosing the reward rate based

on the response function and using Algorithm 2. Because of

prediction error (as shown by error bar in Fig. 13a), the actual

energy reduction may be different from the predicted value.

However, Fig. 13b shows the actual and predicted energy

reduction for a snapshot period, matching each other fairly

well. The average deviation between the actual and predicted

energy reduction for the whole year is less than 1%.

Fig. 14 shows a snapshot of colocation’s grid power con-

sumption and reward rates. In Fig. 14a, we see that BASELINE

has the highest grid power consumption because tenants are

charged based on power subscription and have no incentives

to reduce any energy. RECO and EPR have much lower grid

power consumption compared to BASELINE, saving 41% and

54% of average power consumption, respectively. Fig. 14b

shows the reward rates provided to tenants. We see that RECO

offers lower reward rates (average 7 ¢/kWh) compared to EPR

(average 9.7 ¢/kWh), because RECO is optimizing the reward

rate to minimize the colocation’s cost and giving a higher
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Fig. 15: Monthly cost savings for colocation and tenants.
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Fig. 16: Impact of changes in tenants’ behaviors.

reward will increase energy reduction but the corresponding

reward cost will increase the overall cost. Because of the lower

reward rate offered by RECO, power consumption of RECO

is higher than EPR, but the overall cost is reduced, which is

the metric that RECO focuses on.

We show the cost savings of EPR and RECO in Fig. 15,

compared to BASELINE that offers no reward. The error bars

in Fig. 15a represent the range of tenants’ cost savings. We

see that RECO has a more than 19% cost saving compared

to BASELINE, while reaching up to 27% during the summer

months. The increased cost savings during summer months

are because PG&E has higher energy and demand charges

during summer, thus increasing the potential of cost saving via

rewards. EPR has a cost saving of around 15% during winter

and 20% during summer. While RECO saves more than EPR

in terms of colocation’s costs, it gives less reward to tenants

and keeps some energy cost saving for the colocation operator.

Nonetheless, tenants can still get back an average of more than

15% of their colocation costs.4

2) Adaptation of RECO: To demonstrate that RECO can

adapt to large changes in tenants’ power management, we

increase the value of b in Sigmoid function for all the tenants’

responses at the start of May, making the tenants less willing

to reduce energy. We change back b to its initial value at the

start of September. Fig. 16a shows the impact caused by the

sudden changes in tenants’ behaviors on the response function.

We see the sudden spikes in energy reduction prediction errors

when the changes occur, and then the error gradually goes

down, showing the adaptability of RECO. The similar pattern

occurs again when the response setting is changed back to its

initial value. Positive prediction error indicates over-prediction

of energy reduction, while negative prediction error indicates

4Based on a fair market rate of 147$/kW per month for colocation [11].
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Fig. 17: Cost savings in different locations.

under-prediction. We also see that higher reward rate is offered

when the tenants become less willing to participate in RECO.

However, as shown in Fig. 16b, the tenants also have lower

savings when they are less willing to reduce energy and

correspondingly, cost saving for the colocation also decreases.

We take the liberty that tenants will become more willing

to shed energy (for rewards), as power management is being

increasingly adopted and tenants (e.g., Apple and Akamai) are

pressured by the public for energy efficiency [7], [9].

Finally, we show in Fig. 17 the cost savings by RECO and

EPR, compared to BASELINE, in different U.S. colocation

markets. The error bar indicates the range of different tenants’

savings. The results are consistent with our above findings:

by using RECO, colocation operator achieves the lowest cost,

while tenants are also able to save some costs. The variations

in cost savings across locations are mainly because of the

location-specific electricity rates and colocation rental rates.

VII. RELATED WORK

Data center power management has been explored by many

prior studies. For example, power proportionality [22], [27],

[28], has been well investigated and also applied in large sys-

tems (e.g., Facebook’s AutoScale [47]). In geo-distributed data

centers, several studies explore spatio-temporal diversity, e.g.,

electricity price [30], [36], [37], carbon efficiency [20], [26],

and renewable availability [50]. Power over-subscription [46]

and hardware heterogeneity [23] are also effective to reduce

operator’s total cost of ownership and improve performance.

Recently, taming data center’s peak power demand charge has

been studied by using, e.g., workload scheduling [45], load

shedding [49], and jointly optimizing IT and facility resources

[31]. These studies are applicable for owner-operated data

centers, but they cannot be used directly for colocations due

to the operator’s lack of control over tenants’ servers.

In the context of colocations, [38] investigates colocation

demand response to aid power grid stability, while [25] pro-

poses a bidding-based mechanism to let tenants “compete” for

a limited budget for minimizing carbon footprint (rather than

cost). These studies, however, suffer from tenants’ untruthful-

ness, i.e., if tenants report falsified values to gain benefits, the

solutions will collapse. By contrast, in our study, the colocation

operator proactively learns tenants’ response without relying

on tenants’ self-reporting, thus avoiding tenants’ cheating.

Further, our study focuses on cost minimization and also

differs from [25], [38] in: (1) we capture peak power demand

charge; (2) we incorporate the effect of outside temperature

and solar energy availability; and (3) we propose a new



feedback-based online algorithm to optimize reward rate for

cost minimization.

VIII. CONCLUSION

This paper focused on reducing operational cost for colo-

cation and addressed the lack of coordination among tenants’

power consumption, which has been neglected by prior re-

search. We proposed RECO, which learns tenants’ response

to rewards and dynamically sets the reward rate to reduce

colocation’s cost using feedback-based online optimization.

We evaluated RECO via a scaled-down prototype and also

simulations, showing that RECO can save up to 27% of the

operational cost while the tenants may save up to 15% of their

colocation rent subject to SLA.

ACKNOWLEDGEMENT

This work was supported in part by NSF CNS-1423137 and

CNS-1143607.

REFERENCES

[1] “Wikimedia’s data center search ends with cyrusone,”
http://www.datacenterknowledge.com/archives/2014/05/05/
wikimedias-data-center-search-ends-cyrusone/ .

[2] “Google transparency report,” http://www.google.com/
transparencyreport/traffic/explorer.

[3] “Colocation market - worldwide market forecast and analysis (2013 -
2018),” http://www.marketsandmarkets.com.

[4] “California ISO open access same-time information system,” http://
www.oasis.caiso.com.

[5] http://www.pge.com/.
[6] “Historical Weather,” http://www.wunderground.com/.
[7] Akamai, “Environmental sustainability policy,” http://www.akamai.com.
[8] Amazon, https://aws.amazon.com/about-aws/globalinfrastructure/.
[9] Apple, “Environmental responsibility report,” 2014, http://images.apple.

com/environment/reports/docs/Apple Environmental Responsibility
Report 2014.pdf.

[10] L. A. Barroso, J. Clidaras, and U. Hoelzle, The Datacenter as a
Computer: An Introduction to the Design of Warehouse-Scale Machines.
Morgan & Claypool, 2013.

[11] CBRE, “Q4 2013: National data center market update,” 2013, http://
www.cbre.us/services/office/data-center-solutions-group/ .

[12] CyrusOne, “Colocation: the logical home for the cloud,” 2012,.
[13] DatacenterMap, “Colocation USA,” http://www.datacentermap.com/

usa/.
[14] J. dePreaux, “Wholesale and retail data centers - North America and

Europe - 2013,” IHS, Jul. 2013, https://technology.ihs.com/api/binary/
492570.

[15] R. A. Dines, “Build or buy? the economics of data center facilities,” in
Forrester Research, 2011, http://www.io.com/wp-content/uploads/2013/
04/build-or-buy.pdf.

[16] Emerson Network Power, “Liebert DSE precision cooling system,”
http://www.emersonnetworkpower.com/documentation/en-us/products/
precisioncooling/largeroomcooling/documents/sl-18927.pdf.

[17] Enaxis Consulting, “Pricing data center co-location services,” 2009,
http://enaxisconsulting.com.

[18] Equinix, www.equinix.com.
[19] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,

“Autoscale: Dynamic, robust capacity management for multi-tier data
centers,” ACM Trans. Comput. Syst., vol. 30, no. 4, pp. 14:1–14:26,
Nov. 2012.

[20] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “It’s not easy being
green,” SIGCOMM Comput. Commun. Rev., vol. 42, no. 4, pp. 211–222,
Aug. 2012.

[21] J. Glanz, “Power, pollution and the internet,” in The New York Times,
Sep. 22, 2012.

[22] B. Guenter, N. Jain, and C. Williams, “Managing cost, performance
and reliability tradeoffs for energy-aware server provisioning,” in IEEE
Infocom, 2011.

[23] M. Guevara, B. Lubin, and B. C. Lee, “Navigating heterogeneous
processors with market mechanisms,” in HPCA, 2013.

[24] R. Huang, T. Huang, R. Gadh, and N. Li, “Solar generation prediction
using the arma model in a laboratory-level micro-grid,” in SmartGrid-
Comm, 2012, pp. 528–533.

[25] M. A. Islam, S. Ren, and X. Wang, “GreenColo: A novel incentive
mechanism for minimizing carbon footprint in colocation data center,”
in IGCC, 2014.

[26] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen,
“Reducing electricity cost through virtual machine placement in high
performance computing clouds,” ser. SuperComputing, 2011.

[27] C. Li, R. Zhou, and T. Li, “Enabling distributed generation powered
sustainable high-performance data center,” in HPCA, 2013.

[28] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska, “Dynamic right-
sizing for power-proportional data centers,” in IEEE Infocom, 2011.

[29] H. Liu, “A measurement study of server utilization in public clouds,” in
DASC, 2011.

[30] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew, “Greening
geographical load balancing,” in SIGMETRICS, 2011.

[31] Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen, “Data center
demand response: avoiding the coincident peak via workload shifting
and local generation,” in SIGMETRICS, 2013.

[32] H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and
A. Leon-Garcia, “Autonomous demand side management based on
game-theoretic energy consumption scheduling for the future smart
grid,” IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 320–331, Dec. 2010.

[33] J. Novet, “Colocation providers, customers trade tips on energy savings,”
Nov. 2013, http://www.datacenterknowledge.com/.

[34] NRDC, “Scaling up energy efficiency across the data center industry:
Evaluating key drivers and barriers,” Issue Paper, Aug. 2014.

[35] D. S. Palasamudram, R. K. Sitaraman, B. Urgaonkar, and R. Urgaonkar,
“Using batteries to reduce the power costs of internet-scale distributed
networks,” in SoCC, 2012.

[36] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs,
“Cutting the electric bill for internet-scale systems,” in SIGCOMM,
2009.

[37] L. Rao, X. Liu, L. Xie, and W. Liu, “Reducing electricity cost:
Optimization of distributed internet data centers in a multi-electricity-
market environment,” in IEEE Infocom, 2010.

[38] S. Ren and M. A. Islam, “Colocation demand response: Why do I turn
off my servers?” in ICAC, 2014.

[39] N. Sharma, P. Sharma, D. Irwin, and P. Shenoy, “Predicting solar
generation from weather forecasts using machine learning,” in Smart-
GridComm, 2011, pp. 528–533.

[40] STEM, “Demand charges,” 2014.
[41] E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: a power-

proportional, distributed storage system,” Tech. Rep. MSR-TR-2009-153,
2009.

[42] G. Urdaneta, G. Pierre, and M. Van Steen, “Wikipedia workload analysis
for decentralized hosting,” Computer Networks, 2009.

[43] U.S. EPA, “Utility guide for designing incentive programs focused on
data center efficiency measures,” Nov. 2012.

[44] Verizon Terremark, “Pricing plan,” http://www.terremark.com/
landing-pages/colocation-promo-group3/.

[45] C. Wang, B. Urgaonkar, Q. Wang, and G. Kesidis, “A hierarchical
demand response framework for data center power cost optimization
under real-world electricity pricing,” in MASCOTS, 2014.

[46] D. Wang, C. Ren, and A. Sivasubramaniam, “Virtualizing power distri-
bution in datacenters,” in ISCA, 2013.

[47] Q. Wu, “Making facebook’s software infrastructure more energy efficient
with autoscale,” 2014.

[48] H. Xu, C. Feng, and B. Li, “Temperature aware workload management
in geo-distributed datacenters,” in SIGMETRICS, 2013.

[49] H. Xu and B. Li, “Reducing electricity demand charge for data centers
with partial execution,” in e-Energy, 2014.

[50] Y. Zhang, Y. Wang, and X. Wang, “Greenware: Greening cloud-scale
data centers to maximize the use of renewable energy,” in Middleware,
2011.

[51] H. Zhong, L. Xie, and Q. Xia, “Coupon incentive-based demand
response: Theory and case study,” IEEE Trans. Power Systems, vol. 28,
no. 2, pp. 1266–1276, May 2013.


