
Practical Efficient Microservice Autoscaling with QoS Assurance
Md Rajib Hossen

The University of Texas at Arlington
Texas, USA

mdrajib.hossen@mavs.uta.edu

Mohammad A. Islam
The University of Texas at Arlington

Texas, USA
mislam@uta.edu

Kishwar Ahmed
University of South Carolina Beaufort

South Carolina, USA
ahmedk@uscb.edu

ABSTRACT
Cloud applications are increasingly moving away from monolithic
services to agile microservices-based deployments. However, effi-
cient resource management for microservices poses a significant
hurdle due to the sheer number of loosely coupled and interacting
components. The interdependencies between various microservices
make existing cloud resource autoscaling techniques ineffective.
Meanwhile, machine learning (ML) based approaches that try to cap-
ture the complex relationships in microservices require extensive
training data and cause intentional SLO violations. Moreover, these
ML-heavy approaches are slow in adapting to dynamically chang-
ing microservice operating environments. In this paper, we propose
PEMA (Practical EfficientMicroserviceAutoscaling), a lightweight
microservice resource manager that finds efficient resource alloca-
tion through opportunistic resource reduction. PEMA’s lightweight
design enables novel workload-aware and adaptive resource man-
agement. Using three prototype microservice implementations, we
show that PEMA can find efficient resource allocation and save up
to 33% resource compared to the commercial rule-based resource
allocations.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Autoscaling, microservices, resource management, cloud comput-
ing, quality of service

ACM Reference Format:
Md Rajib Hossen, Mohammad A. Islam, and Kishwar Ahmed. 2022. Practical
Efficient Microservice Autoscaling with QoS Assurance. In Proceedings
of the 31st Int’l Symposium on High-Performance Parallel and Distributed
Computing (HPDC ’22), June 27-July 1, 2022, Minneapolis, MN, USA. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3502181.3531460

1 INTRODUCTION
Motivation.Microservices architecture is enjoying a growing pen-
etration in user-facing cloud applications where an ensemble of
loosely-coupled and small service components (i.e., microservices)
work together to serve user requests [1–3]. As illustrated in Fig. 1,
microservices architecture is a significant departure from tradi-
tional monolithic deployments with a few large application layers

This work is licensed under a Creative Commons Attribution
International 4.0 License.

HPDC ’22, June 27-July 1, 2022, Minneapolis, MN, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9199-3/22/06.
https://doi.org/10.1145/3502181.3531460

UI

Logic DB
Access

UI

Monolithic Microservice

M
ic
ro
se
rv
ic
es

Figure 1: Comparison between monolithic and microser-
vices architecture. Microservices consists of many small
loosely coupled systems.

such as user-facing front-end, back-end business logic, and data-
base [4]. Unlike monolithic applications, the small microservices
can be easily managed and kept updated by small dedicated De-
vOps teams [5]. Moreover, microservices are typically stateless and
communicate using lightweight APIs [6, 7]. Hence, they offer agile
resource management and scaling, better fault tolerance, and great
platform agnostic compatibility among different microservices that
cannot be matched by monolithic applications [5, 8].

Microservices come with their own sets of challenges, and in
this paper, we focus on its resource management. In principle, mi-
croservice resource management is same as monolithic applications
- achieve the desired performance (e.g., end-to-end response latency)
with the minimum resource allocation [9–11]. Resource manage-
ment for microservices-based applications, however, is more chal-
lenging because these applications have amuch larger configuration
space due to the sheer number of microservices responsible for the
application performance. For example, if we consider an application
withm microservices where each microservice can be configured
with n different CPU allocations, there will be nm possible resource
configurations. Moreover, microservices have complex communica-
tion topology and inter-dependencies that make it harder to identify
and mitigate Quality of Service (QoS) violations [2, 8]. A single user
request may traverse through several microservices, and if any
microservice in the critical path becomes a bottleneck, the end-to-
end response time will increase significantly [12]. Our motivating
experiments on three prototype microservices show that the same
amount of CPU allocation can result in more than 250% increase
in application latency based on how the resource is distributed
among different microservices. Meanwhile, existing resource man-
agement techniques developed for monolithic applications with a
few service layers cannot readily capture the complex microservice
interactions to make effective resource allocation choices [13–16].

https://doi.org/10.1145/3502181.3531460
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3502181.3531460

Nevertheless, addressing these resource management challenges
for microservices is of paramount importance as an increasing num-
ber of production cloud services have been adopting microservice
architectures [4, 17].
Limitation of state-of-art approaches. Owing to the growing
interest, several recent works try to address the resource manage-
ment challenges in microservices [4, 12, 17–19]. They focus on
utilizing machine learning (ML) techniques to capture the com-
plex relationship between microservice resources and performance.
For instance, FIRM [12] uses a combination of support vector ma-
chines (SVM) and reinforcement learning to localize root causes
of SLO violations, and apply resource autoscaling to avert these
violations. Sage [18], on the other hand, uses supervised training
to identify dependencies between different microservices using a
Causal Bayesian Network, and a graph encoder to track the QoS
violating microservices to adjust their resources. However, this line
of works built on ML are fundamentally limited by their extensive
training requirements, both in terms of training time to capture
the dynamics of the microservices and data resolution (e.g., request
level traces to build dependency graphs). More importantly, to learn
from the data, some ML-based techniques intentionally cause or
allow SLO violations which is undesirable in production systems
[12, 17–19]. Also, any changes in the microservices architecture
and inter-dependencies will require retraining the system. This
ML retraining can become a barrier for real world microservices
applications which go through frequent software/code updates. ML
retraining can also be triggered by changes in underlying cloud
hardware due to server migrations and upgrades. On the other hand,
the resource demand of microservices changes with the workload
on a daily basis. However, existing approaches focusing on SLO
violations do not directly incorporate dynamic workload in their
learning [12, 17–19].
Key insights and contributions. To avoid the hurdles of the ap-
proaches mentioned above, we propose PEMA (Practical Efficient
Microservice Autoscaling), a lightweight microservice resource
manager that does not need extensive training. PEMA utilizes iter-
ative feedback-based tuning to find efficient resource allocations
that satisfy the SLO. Instead of finding the best resource configura-
tion, PEMA first allocates abundant resources to all microservices
to satisfy SLO and then tries to exploit resource reduction oppor-
tunities. Allocating abundant resources for the microservices can
be easily accomplished as cloud native applications enjoy a great
degree of resource scalability. The initial (and inefficient) resource
allocation can be achieved using existing rule-based resource man-
agers [20]. Using this opportunistic resource reduction approach,
PEMA avoids causing intentional SLO violations as it always allo-
cates enough resources for microservices, even when performing
poorly (i.e., missing resource reduction opportunities). To enable
PEMA’s approach, we introduce the notion of “monotonic resource
reduction” where we either reduce the resource of a microservice or
keep it unchanged. In contrast, a non-monotonic resource reduction
can be made through resource reduction for some microservices
and resource increase for some other microservices with an overall
total resource reduction (i.e., a greater total reduction than total
increase). We observe that monotonic resource reductions result
in a monotonic increase in response time. Hence, we can use the

response time as feedback to identify resource reduction opportuni-
ties to make gradual monotonic resource changes to reach efficient
allocations. In addition, based on experiments on prototype mi-
croservice implementations, we identify that we can avoid resource
reduction in bottleneck services using only two microservice-level
performance metrics - CPU utilization and CPU throttling time.

Our feedback-based design also allows us to seamlessly adapt
a workload-aware design where we implement a novel approach
of using dynamic workload ranges with a dynamic response time
target. More specifically, to avoid time-consuming learning of the
efficient allocation for different workload levels independently, we
use dynamic ranging where PEMA starts resource allocation for a
large workload range (e.g., 100∼1000 requests-per-second) and then
gradually splits them into smaller ranges (e.g., 100∼200 requests-
per-second). We retain the resource allocation learned by the parent
workload range during the range split to bootstrap the tuning for
the new workload range. Based on the workload, we also dynami-
cally alter the feedback from response time to allow headroom for
response time change due to workload change.

Our performance evaluation reveals that PEMA can attain re-
source efficiency close to the optimum 1 with high probability. We
also show that PEMA can save as much as 33% resource compared
to rule-based resource allocation strategies of commercially avail-
able cluster managers. We demonstrate that PEMA can seamlessly
adapt to changes in microservice deployment due to changes in
underlying cloud hardware. Moreover, we show that adaptability
of PEMA allows its integration with opportunistic resource man-
agement where variable SLO is used for trading performance for
resource savings.
Experimental methodology and artifact availability. We use
three prototype microservices implementations widely used in
academic research on microservices [12, 17, 18]. We implement
TrainTicket from [21] consisting of 41 microservices, SockShop
from [22] with 13 microservices, and HotelReservation from [2]
with 18 microservices. We deploy these services in Docker [23]
containers managed by Kubernetes [24]. Our Kubernetes cluster
consists of five nodes with one master node and four worker nodes.
Each node is equipped with two 10-core Intel Xeon processors, and
128 GB of Memory running the Ubuntu 20.04.3 operating system.
Our software artifacts are available at our GitHub repository [25].
Limitations of the proposed approach. We share our insight
on the limitations of PEMA on two different fronts - the funda-
mental limitations in PEMA’s design approach and the limitations
of PEMA’s current implementation. Due to its non ML-heavy ap-
proaches, PEMA’s design loses on capturing complex interdepen-
dencies between microservices, and therefore is limited on the
absolute best resource efficiency it can achieve. However, PEMA
makes up for this loss of optimization potential through its sim-
plicity and adaptability to change (e.g., workload variation). Also,
due to our randomized exploration based search, PEMA offers prov-
ably efficient management and can result in arbitrarily inefficient
resource allocations at times. We defer the discussion on the limita-
tions of PEMA’s current implementation to the end of our paper in
Section 6 to make it more meaningful to the reader.

1Optimum resource allocation refers to the minimum resource required to satisfy SLO.
We describe how we identified the optimum resource allocation in Section 4.2.

Frontend Orders

Carts

User

Catalogue Catalogue - MySQL

User - Mongo

Orders - Mongo

Carts - Mongo

Queue Queue - Master

Shipping

Frontend Business Logic Database

Figure 2: Architecture of the SockShop [22].

Ticket reserve

High speed
ticket reserve

Ticket execute

Inside Pay

High Speed
Travel Explore

Travel Explore

Pay

Ticket rebook

Security

Cancel Order Order

High Speed
Order

Single
Sign-on

Ticket Info

Login Verify
Code

Register

Basic
Info

Notify

Config

Station

Train

Contact

Price

G
at

ew
ay

D
at

ab
as

e
Figure 3: Architecture of the TrainTicket [21, 26].

2 PRELIMINARIES
2.1 Microservice Prototypes
SockShop [22]. SockShop implements the user-facing microser-
vices of an e-commerce website. SockShop’s functionalities include
searching, order placement, and shipping. Its functionalities can be
divided into three parts - front-end, business-logic, and databases.
The user requests arriving at the front-end are routed to appropri-
ate microservices to serve the requests. The business-logic interact
with each other and the databases as needed. The front-end is
implemented using NodeJS, orders and carts microservices are im-
plemented using Java, and the rest of the services are implemented
with Go. Shipping service uses RabbitMQ to propagate messages
to Queue-Master which is implemented in Java. The databases are
implemented using MySQL and MongoDB. For SockShop, we set
the SLO response time to 250 milliseconds. The overall architecture
is shown in Fig.2.

TrainTicket [21]. TrainTicket implements a complete train
ticket booking system consisting of 41 microservices. Its function-
alities include ticket search with date and destination filtering, seat
booking, ordering food, payment, and consignment service. The
business logic of TrainTicket is implemented using 24 microser-
vices divided into five layers where the microservices in the upper
layers depend on the microservices of the lower layers. There are
some intra-layer communications as well. The overall architecture
is shown in Fig. 3. TrainTicket covers many features of microser-
vices such as synchronous invocations, asynchronous invocations,
and message queues. The TrainTicket business logics and front-
end are built using NodeJS, Java, Python, and Go. The databases
are implemented using MongoDB, and MySQL. For TrainTicket,
we set the SLO response time to 900 milliseconds.

HotelReservation [2]. HotelReservation application is adopted
from DeathStarBench microservices benchmark applications. It has
18 microservices. HotelReservation lets users get nearby hotel in-
formation and reserve rooms. All the services in HotelReservation
are written in Go, and they communicate with each other via gRPC

Frontend

Rate

Recommend
User

Geo

Profile

Search

Reserve
Reserve - Memc

Rate- Memc

Geo - Mongo
Profile - Memc

Reserve - Mongo
Recommend - Mongo

Rate - Mongo

User - Mongo

Profile - Mongo
Frontend Business Logic DB & Caching

Figure 4: Architecture of the HotelReservation [2].

[27]. The back-end uses Memcached for in-memory caching to pro-
vide faster searches while the persistent databases are implemented
using MongoDB. The application is pre-populated with 80 hotels
and 500 registered users. This application consists of 18 microser-
vices. For HotelReservation, we set the SLO response time to 50
milliseconds.

2.2 Performance Monitoring and Resource
Allocation

For performance monitoring of our container-based microservice
implementation, we use Prometheus [28] to collect container-specific
metrics such as CPU utilization and CPU throttling. For collect-
ing end-to-end latency performance and workload (i.e., requests
per second), we use Linkerd [29]. We also use Jaeger [30] which
provides detailed tracing of each request showing its service path
through different microservices. Note that, our resource manager
does not utilize Jaeger.

We use the 95-th percentile end-to-end response latency as a
performance metric and refer to it as the application performance
unless specified otherwise. For our cloud-based microservice ap-
plications which exploit request-level-parallelism, end-to-end re-
sponse latency is the popular choice of performance metric [31]. For
microservice resources, we only consider the total CPU allocation
to a microservice with the assumption that the memory is not a
bottleneck resource. Furthermore, we do not explicitly address the
number of container replicas and consider homogeneous settings
for each microservice.

2.3 Challenges in Microservice Resource
Management

As in any general computing system, the performance of microser-
vices applications depends on their resource allocation. Various
theoretical and practical tools have been developed over the years
to establish a mathematical relationship between computing re-
source and performance [9]. However, they are not equipped to
capture complex interactions between different microservices. Any
request’s end-to-end response time (i.e., performance) is the ag-
gregation, often non-linearly due to parallel processing, of time
spent in many microservices. Consequently, the presence of any mi-
croservice with a resource bottleneck on the service path affects the
end-to-end response time. Meanwhile, the resource demand for dif-
ferent microservices can be widely different based on their service.
Hence, the distribution of resources among different microservices
plays a crucial role in application performance.

100 200 300
Workloads (RPS)

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 R
es

po
ns

e Good Bad

(a) TrainTicket

250 550 950
Workloads (RPS)

0.0

0.5

1.0

1.5

2.0

N
or

m
al

iz
ed

 R
es

po
ns

e Good Bad

(b) SockShop

300 500 700
Workloads (RPS)

0

1

2

3

4

N
or

m
al

iz
ed

 R
es

po
ns

e Good Bad

(c) HotelReservation

Figure 5: Impact of “Good” (i.e., satisfies SLO) and “Bad” (i.e.,
violates SLO) resource distribution on the response time nor-
malized to the SLO at different workloads levels. In Fig. (a),
for workloads 100, 200, and 300, total CPU allocations are
40.5, 42, and 47 respectively. In Fig. (b), for workloads 250,
550, and 950, total CPU allocations are 6.3, 7.7, and 14.1, re-
spectively. In Fig. (c), for workloads 300, 500, and 700, total
CPU allocations are 5.1, 6.9, and 9.4, respectively.

To demonstrate the importance of resource distribution, we run a
few experiments on our microservices prototypes. We first identify
“good” resource allocations that satisfy the SLOs for the prototypes
for different workload levels. We then change these to “bad” distri-
butions by randomly altering resource allocations while keeping
the total resource the same. Fig. 5 shows the impact of this resource
distribution - even with the same amount of resources, the per-
formance varies significantly because of changes in distribution.
For, TrainTicket we see as much as 43.88% increase in response
time while SockShop and HotelReservation suffer up to 91.3%
and 256.2% increase, respectively.

Due to the large configuration space, the “good” resource distri-
bution cannot be readily determined for microservices. Also, the
nature of processing done in different microservices is different and
cannot adhere to any general resource allocation principle, such
as keeping utilization lower than a certain level [10, 11, 20, 32]. To
illustrate this, we show the resource distributions of SockShop’s
microservices for the good and bad configurations with the same
amount of total resource in Fig. 6(a) and the corresponding CPU
utilization in Fig. 6(b). We see that there is no readily identifiable
root cause (e.g., microservice with bottleneck resource) in response
latency in Fig. 6(b) for the 74% increase (236 milliseconds to 411
milliseconds). Also, while we see an increase in utilization for the
cart, catalogue, and user services for the bad configuration, their
utilization remains below the frontend’s utilization, making it
impossible to employ any common utilization-based resource allo-
cation policy. Furthermore, we see that the utilization change due to
resource change is different for different services. For example, the
frontend’s utilization changed more than orders even though
they experienced similar resource change. This indicates that re-
source allocation policies that try to increase overall utilization
[12], may not be the most efficient.

To summarize, for efficient microservice management, it is cru-
cial to identify how resources should be distributed among different
microservices as the same amount of resources can result in signifi-
cantly different performance based on which microservice gets how
much resources. However, finding the efficient resource distribution
is very hard as there are no easily generalizable markers (e.g., high
utilization) to assist in the resource allocation.

ca
rt

s

ca
ta

lo
gu

e

fr
on

te
nd

or
de

rs

pa
ym

en
t

sh
ip

pi
ng

us
er

Microservices

0.0

0.5

1.0

1.5

2.0

C
PU

 A
llo

ca
tio

n Latency - 236 ms
Latency - 411 ms

(a) CPU allocation

ca
rt

s

ca
ta

lo
gu

e

fr
on

te
nd

or
de

rs

pa
ym

en
t

sh
ip

pi
ng

us
er

Microservices

0

25

50

75

C
PU

 U
til

iz
at

io
ns

 (%
)

Latency - 236 ms
Latency - 411 ms

(b) Utilization

Figure 6: (a) Total CPU allocation of 7.5 distributed among
different microservices of SockShop. (b) CPU utilization.

3 DESIGN OF PEMA
We have two design goals for our resource manager - (1) assure QoS
(i.e., avoid SLO violations), and (2) find efficient resource allocation.
Using a discrete-time model with a time step ∆t (e.g., one minute)
where the microservice resource allocation decisions are updated
at the beginning of each time step, we formalize our resource man-
agement as the following optimization problem ORA (Optimum
Resource Allocation)

ORA : minimize
xt

N∑
i=1

xti (1)

subject to F (xt) ≤ R (2)

Here, at time step t , xt = (xt1 ,x
t
2 , · · · ,x

t
N) is the resource allocation

vector of the N microservices, F (xt) is the end-to-end latency
response of the application for resource allocation xt , and R is the
response latency threshold defined in the SLO. In what follows,
we develop PEMA (Practical Efficient Microservice Autoscaling) -
a practical microservices resource manager that finds a provably
efficient solution to ORA. We first discuss the design principles of
PEMA to achieve our goals (i.e., the solution to ORA), followed by
the rationale for our choices and implementation details of PEMA.

Note here that, instead of minimizing the total resource alloca-
tion, ORA can also adopt cost minimization as its goal by replacing
xti in Eqn. (1) with C(xti) which represents the cost of resource xti .
Moreover, resource allocation vector xt is not restricted to CPU
allocations only. We can incorporate other types of cloud resources
such as memory allocation and I/O bandwidth in xt . Nevertheless,
our general solution principle still applies, albeit the opportunistic
resource reductions need to be conducted on multiple resource
dimensions.

3.1 Design Principles of PEMA
A learning-based approach.Achieving either of our design goals
for a microservice-based application is non-trivial due to their com-
plex topology and inter-dependency between different microser-
vices. Moreover, the relation and interaction with each other for
these microservices varies with applications and deployments, even
among different versions of the same application. Not to mention,
the underlying cloud hardware (e.g., processor type/model) hosting

these applications also affects the microservice performance and
resource allocation. Consequently, our resource manager needs to
identify resource allocation strategies for each microservice imple-
mentation and at the same time be able to adapt as the application
evolves. Hence, we take a learning-based approach where PEMA
iteratively interacts with the application through a feedback loop
to navigate towards efficient resource allocations.

Provably efficient resource allocation. Solving PEMA can be
interpreted as tuning the application resources that will make the
response latency exactly equal to the SLO specified level. However,
since the resource distribution across different microservices affects
the latency and microservice-based applications usually consist
of many microservices, there could be many different resource
allocations that result in a latency equal to the SLO. Consequently,
in PEMA, instead of finding the best resource allocation (i.e., the
lowest aggregate resource), our goal is to find a resource allocation
close to the optimum with fewer iterations.

QoS preserving learning. An unwanted pitfall of the learning-
based approach in the existing literature is that the system needs
to learn “bad” resource allocations that cause SLO violation by
causing/creating these violations [12, 17–19]. While our approach
too cannot completely eradicate the possibility of SLO violations,
unlike prior works, we do not cause them intentionally. Instead,
we adopt a QoS conservative approach where we start from with
sufficient resource for all microservices to satisfy SLO, and then
iteratively search for resource reduction opportunities based on the
application’s performance statistics. During the search/learning,
PEMA always tries to maintain latency performance better than the
SLO. Moreover, we dynamically tune howmuch resource we reduce
based on how close our performance is to the SLO and stop tuning
if the performance is at the SLO level. For example, with a response
time SLO of 250ms, PEMA will try to reduce more resources when
the response time is 150ms than when the response time is 200ms.
Hence, during resource allocation navigation, PEMA does not set a
resource allocation to violate the SLO intentionally.

Feedback-based navigation. Starting with ample resources
for each microservices to comfortably satisfy SLO, PEMA uses the
difference between current application performance and the SLO
as an indicator of resource reduction opportunity. However, it does
not tell us on which microservice(s) we should exercise the resource
reduction. Hence, PEMA uses microservice-wise performance met-
rics to determine the target microservices. More specifically, PEMA
uses the microservice-wise performance metrics to filter out the
microservices approaching their bottleneck resource configuration
and then implements a randomized selection process where the
probability of picking a microservice is determined by its perfor-
mance metrics. With unknown relation between a microservices
resource allocation with the overall application performance, a
guided randomized selection allows PEMA to explore various pos-
sible combinations of resource allocation.

3.2 Supporting Results for Design Rationales
Here, we provide corroborating observations for PEMA’s design
using our prototype microservices implementations. We first show
why application’s performance can be a safe yet effective indicator

−0.1 0.0 0.1 0.2 0.3
Normalized Latency Reduction

0
20
40
60
80

100

C
D

F
(%

)

Train Ticket
Sock Shop
Hotel Reserve

(a) CDF of latency change

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Normalized Resource

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 R
es

po
ns

e

Train Ticket
Sock Shop
Hotel Reserve

(b) Response time change

Figure 7: (a) Distribution of end-to-end response time in-
crease (normalized to SLO) due tomonotonic resource reduc-
tion. (b) Change in response time (normalized to SLO) with
resource (normalized to optimum).

of resource reduction, followed by how microservice-wise perfor-
mance metrics can help PEMA navigate.

Gradual resource reduction for efficiency. In PEMA, we use
the difference between SLO specified response time and current
system response time to determine how much resource-saving
opportunity is available. Our design choice is motivated by our
observation that, in general, monotonic resource changes across mi-
croservices result in monotonic changes in the end-to-end response
time. We say a resource reduction is monotonic if somemicroservice
resources are decreased while other microservices’ resources are un-
changed. A resource change is not monotonic if some microservices
receive greater resources while some others have their resource
reduced, regardless of what happens to the aggregate resource allo-
cation. Fig. 7(a) shows the CDF of increase in end-to-end response
time for monotonic resource reduction for our applications. Note
that there is no direct relationship between resource reduction
and the amount of change in response time. This is because, the
same amount of resource reduction on different microservices will
have different impact on the end-to-end response time. The CDF
is showing distribution of latency increase for random amounts of
monotonic resource reduction on random numbers of microservices
at random initial (before resource reduction) resource allocations.
The CDF highlights the most likely impact of a monotonic resource
reduction - an increase in the response latency regardless of the
state of the microservice, i.e., its total resource allocation. The CDFs
also show that the opposite, i.e., response latency decreasing with
resource reduction, happens an only handful of times (10.2% for
TrainTicket and 6.1% for SockShop). We attribute these cases as
transient anomalies based on our observation of the application’s
performance metric fluctuations.

The key take away from Fig. 7(a) is that by making monotonic
resource reductions, we can gradually increase the latency to the SLO
level. In Fig. 7(b), we show examples of such monotonic resource
reduction steps and its impact on latency. Here, we normalize the
resource to the optimum resource allocation and the latency to
the SLO level. PEMA’s goal in Fig. 7(b) is to reach coordinate (1,
1) by gradually making monotonic resource changes. Note that
the resource reduction steps in Fig. 7(b) is not unique. Moreover,
monotonic resource reduction alone does not guarantee to reach the
optimum resource allocation keeping the response latency within
the SLO. Instead, it offers a QoS preserving approach of navigation
to find efficient resource allocation.

Table 1: Classification accuracy with CPU utilization and
CPU throttling time as features to detect bottleneck mi-
croservices.

Microservice Name Botteleneck Services Accuracy (%)
TrainTicket seat 94.18
TrainTicket seat, ticketinfo 96.2
SockShop carts 100.0
SockShop carts, orders 98.3

HotelReservation front-end 97.8
HotelReservation front-end, search 95.6

Microservice-wise augmentation.While the response latency
tells us about the resource reduction opportunities, it does not tell
us from which microservices we should reduce the resources. We
need to avoid microservices that may create a bottleneck during
this resource reduction. We define a microservice’s “bottleneck
resource” as the resource allocation that makes the microservice
a bottleneck. In PEMA, we use microservice-level performance
metrics to identify the microservices with imminent bottleneck
resources. However, as opposed to prior works where complex ma-
chine learning models are applied to determine such bottleneck
services, we use only two performance metrics - CPU utilization
and CPU throttling time [33].

Our choice of these performance metrics is based on our ex-
periments. We intentionally create bottlenecks and use feature
extraction to identify which performance metrics can be used to
identify the bottleneck services reliably. Note that these experi-
ments are done to assist in our design. PEMA does not need any of-
fline experiments or pre-training. For each microservice, we collect
the following performance metrics - cpu_usage_seconds_total,
memory_usage_bytes, cpu_cfs_throttled_seconds_total, Jaeger
tracing - self_time, and duration. We then run classification with
various combinations of the performance metrics as features. We
find that, when used as the classification features, CPU utilization
and CPU throttling time give us the highest classification accuracy.
Table 1 shows the classification accuracy for different applications
with various bottleneck services.

To better understand the role of CPU utilization and CPU throt-
tling time as bottleneck indicators, we track these metrics for
three different microservices in TrainTicket- seat, basic, and
ticketinfo, as we reduce their resources to create bottlenecks.
To identify the bottleneck, we allocate sufficient resources to all
other microservices. Fig. 8 shows the change in CPU utilization
and CPU throttling as we reduce the resource of the microservice
under investigation. We normalize the microservice resource al-
locations to their respective bottleneck resources. We make a few
important observations here. First, the CPU utilization (Fig. 8(a))
changes gradually as the microservice approaches and eventually
crosses the bottleneck resource. We also see that the utilization cor-
responding to bottleneck is different for different microservices. For
example, ticketinfo’s bottleneck utilization is around 25%, whereas
seat’s bottleneck utilization is around 15%. Second, CPU throttling
time changes rapidly at bottleneck resource. The bottleneck CPU
throttling time also varies with microservices.

0.5 1.0 1.5 2.0
Normalized Resource

0

15

30

45

C
PU

 U
til

iz
at

io
n

(%
)

seat
basic
ticketinfo

(a) CPU utilization

0.5 1.0 1.5 2.0
Normalized Resource

0.0

0.5

1.0

1.5

2.0

Th
ro

ttl
in

g
Ti

m
e

(s
)

seat
basic
ticketinfo

(b) CPU throttling time

Figure 8: Changes in CPU utilization and CPU throttling
time with resource allocation for three bottleneck mi-
crosservices in TrainTicket- seat, basic, and ticketinfo.

3.3 PEMA
Here we present the details of PEMA’s implementation that builds
on our design principles and experimental observations.

Resource reduction opportunity. In PEMA, similar to gradi-
ent descent, we start with sufficient resources for all microservices
and gradually decrease their resource based on how our resource
change affects the end-to-end response time. We update resource
allocation in regular intervals based on the response time observed
in the previous interval. Since we rely on the response time sta-
tistics, we set sufficiently long update intervals to have stable re-
sponse time statistics. For instance, in TrainTicket, SockShop,
and HotelReservation, we use update interval of two minutes.
For resource reduction at time step t , we first decide the number of
microservices nt to reduce resources from using

nt = N ·min
(
R − r t−1

αR
, 1

)
, (3)

where r t−1 = F (xt−1) is the response time in the previous time step.
α ≤ 1 is a user-defined non-negative parameter that determines
how aggressively we want to reduce the resource. A smaller α will
reduce resource more aggressively and vice versa.

Next, using similar approach as Eqn.(3), we decide how much
resource we reduce in the nt microservices in percentage using

∆t = β ·min
(
R − r t−1

αR
, 1

)
· 100%, (4)

where β ≤ 1 is another user defined parameter that decides the
maximum resource reduction for any microservice in one time step.
A high value of β makes PEMA aggressively change the resource
between update intervals and vice versa. We analyze the impact of
α and β in our evaluation in Section 4.3.

Using Eqns. (3) and (4), PEMA dynamically adjusts the amount of
monotonic resource reduction as our response time r t approaches
SLO limit R. We can also set the values of α and β dynamically to
have more aggressive reduction when R − r t−1 is high and reduce
the amount of reduction per interval as r t approaches R. In addition,
to avoid triggering resource change for transient perturbation in
response time, we can keep a response time buffer by scaling down
R, for instance, to 95%, in Eqns. (3) and (4).

Avoiding bottleneck services. For the i-th microservice, we
denote its utilization as ui with a bottleneck threshold U th

i and
CPU throttling time as hi with a bottleneck threshold H th

i . To

Node NNode 2Node 1

Resource
Manager

Resource History
Database (RHDb)

Resource Allocation

SLO

External
Parameters

PEMA

RPS,

Latency

Metrics,
Configs

Service Mesh

Controller

Figure 9: Block diagram of the PEMA.

decide the nt candidate microservices, we first take the set of mi-
croservices that has a CPU throttling time less than their respective
thresholds. We denote the set of indexes of these microservices
as It = {i : ht−1i ≤ H th

i }. We then normalize the utilization of
each microservice in It to their respective utilization threshold as

u∗t−1i =
ut−1i
U th
i

and update the probability of each microservice in

It as follows

pti = 1 −
u∗t−1i −mini ∈It (u∗t−1i)

1 −mini ∈It (u∗t−1i)
(5)

Here, mini ∈It (u∗t−1i) means the minimum normalized utilization
among all the microservices in It . Eqn.(5) indicates that a microser-
vice with utilization equal to its threshold, i.e., u∗t−1i = 1 will result
in a “zero” probability (pti = 0), whereas the microservice with
the lowest utilization, i.e., u∗t−1i = mini ∈It (u∗t−1i), will have the
probability of “one” (pti = 1). We populate a new candidate set I∗t

with a inclusion probability of pti for the i-th microservice. If the
size of I∗t is equal to or smaller than nt , we take the entire set
I∗t and reduce each microservice in I∗t and reduce their resource
by ∆t . However, if the size of I∗t is greater than nt we uniformly
randomly choose nt microservices from I∗t .

Dynamically updating bottleneck thresholds. As shown in
Fig. 8, the bottleneck thresholds for utilization and CPU throttling
time varies among microservices. Hence, we need to learn the ap-
propriate threshold settings for each microservice. In PEMA, we
begin with a conservative estimation of utilization threshold set at
15% and CPU throttling time threshold of “zero” (i.e., no CPU throt-
tling) for all microservices. We expect all microservices to satisfy
these thresholds as PEMA starts with ample resource allocation.
Similar to our resource reduction approach, we opportunistically
increase these thresholds. More specifically, at the beginning of
every time step t , we update the utilization and CPU throttling time
thresholds as follows

U th
i = max

(
U th
i ,u

t−1
i

)
,∀i (6)

H th
i = max

(
H th
i ,h

t−1
i

)
,∀i (7)

Iterative resource allocation. PEMA applies the resource re-
duction iteratively and saves all resource allocations, xt , and the re-
sponse times, r t , in a “resource allocation history database (RHDb)”.
The purpose of the RHDb is to allow PEMA to roll back to a pre-
vious SLO satisfying resource allocation for all microservices in

Algorithm 1 PEMA

Input: SLO (R), affinity for resource reduction (α), maximum re-
source reduction limit (β), bottleneck utilization (U th

i), and
bottleneck CPU throttling time (H th

i) for all microservices, ex-
ploration probability parameters A and B

Output: Resource allocation (x)
1: for each time-step t do
2: Performance metrics: Collect end-to-end response time

(r t−1), CPU utilization ut−1i , and CPU throttling time ht−1i .
3: Database update. Insert xt−1i , r t−1, U th

i , and H th
i to re-

source allocation history data base with key t − 1.
4: Handling SLO violation. If r t−1 > R, update resource allo-

cation to configuration from the resource allocation database
with minimum resource and no SLO violation. Go to Line 11.

5: Updating bottleneck thresholds. For all microservices,
update bottleneck thresholds for utilization, U th

i , and CPU
throttling time,H th

i , following Eqns. (6) and (7), respectively.
6: Exploration.With a probability pte defined in Eqn. (8), up-

date resource allocation, xt to a randomly chosen configura-
tion from database without SLO violation. Go to Line 11.

7: Resource reduction targets: Determine number of mi-
croservice for resource reduction, nt , using Eqn. (3) and
resource reduction target for each microservice, ∆t using
Eqn. (4).

8: Avoid bottleneck services:Get the setIt of microservices
that do not exceed CPU throttling time threshold.

9: Microservice-wise augmentation: Build a new set I∗t

from microservices in It with an inclusion probability of pti
defined in Eqn. (5).

10: Resource reduction: If |I∗t | > nt , uniformly randomly
choose nt microservices from I∗t , else choose all microser-
vices from I∗t , and then update their resource to xt−1i · ∆t .

11: end for

case of an SLO violation. Even though the resource reduction slows
down when the latency approaches the SLO, PEMA cannot guar-
antee that its opportunistic resource reduction will never cause an
SLO violation. In addition, changes in microservice implementation
or changes in its hardware configuration may also alter optimum
resource allocation and cause SLO violations. In such cases, rolling
back to a previous configuration allows PEMA to jump start on
finding the new optimum, instead of resetting the resource alloca-
tion to the maximum and starting from scratch. While RHDb itself
does not add significant overhead due to its lightweight single-table
implementation, the action of rolling back may cause extra itera-
tions for PEMA to find an efficient resource allocation. Nonetheless,
the mechanism of roll back using RHDb is essential for PEMA’s
adaptability and QoS assurance.

Escaping sub-optimum configurations. The combination of
monotonic resource reduction and probabilistic choice of microser-
vices to reduce resource may cause PEMA to make unfavorable
resource reductions early on (e.g., making particular microservice
reach bottleneck and push response time close to SLO) and settle
at inefficient resource allocation, even though other microservices

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Workload

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 R
es

po
ns

e

Train Ticket
Sock Shop

(a) Response time vs workload

200~400

#1

300~400

#1

350~400

#1

300~350

#3

250~300

#2

200~250

#4

200~300

#2

350~375

#5

375~400

#1

(b) Dynamic workload range

!!"#!!$%

"&'(

" !
= $! −

!!"#
+ ')

*+

"(!!$%)

Workload (!)

Ta
rg

et
 L

at
en

cy
 '
(!
)

(c) Dynamic response time target

Figure 10: (a) Response time change due to workload. (b) Dynamic workload range to bootstrap efficient resource allocation for
different workloads. (c) Dynamically updating target response time to tackle response time change due to workload change.

have redundant resources. This can force PEMA to slow-down pre-
maturely, even stop further resource reduction. To escape from
such inefficient resource allocations, we implement random explo-
ration where PEMA with a probability pte rolls back to a uniformly
random previous resource allocation in RHDb. We set pte based on
the response latency as follows

pte = A ·min
(
R − r t−1

αR
, 1

)
+ B (8)

Here,A and B are exploration parameters that decide the maximum
and the minimum probability of exploration, respectively, and sat-
isfy 0 ≤ B ≤ A ≤ 1 and A + B ≤ 1. The exploration probability
decreases as PEMA’s response time r t−1 approaches the SLO R. The
random exploration also allows PEMA to “walk back” the resource
reduction path it took and identify previously missed reduction op-
portunities. Naturally, the degree of exploration affects how quickly
we reach an efficient resource allocation. Nonetheless, we do not
anticipate this exploration to add significant overhead since PEMA
can find an efficient resource allocation in a few tens of iterations.

Implementation of PEMA. We present the working principle
in Algorithm 1 where PEMA takes performance metrics from the
system using Prometheus and Linkered and then updates the re-
source allocation of the microservices while keeping a log of all
resource allocations and response times in its database RHDb. The
high-level architecture block diagram of PEMA is presented in
Fig. 9.

3.4 Workload-Aware Resource Allocation
Our design of PEMA so far addresses how we can navigate to find
an efficient resource allocation for our microservice-based applica-
tion. Our design, through configuration rollback, can also handle
changes in microservice implementation. Here we address how
PEMA tackles the workload variations. For any cloud application,
the workload intensity (i.e., requests per second) directly affects
the response time, and hence, how much resource is needed [9–11].
In Fig. 10(a), we show the change in response time as the workload
changes. As PEMA iteratively makes resource reductions based on
the response time, a decrease in workload will falsely indicate re-
source reduction opportunities that do not work for high workloads,
leading to many SLO violations when the workload increases. The
same is true for prior ML-based approaches that do not explicitly
address workload change [18, 19].

Hence, PEMA needs to identify efficient resource allocations at
different workload levels. A straightforward way is to divide the
workload variations into discrete workload ranges (e.g., a workload
range from “X” requests-per-second to “Y” requests-per-second)
and run multiple copies of PEMA in a “pseudo-parallel” fashion. We
say pseudo-parallel as at any time only one PEMA is working on its
corresponding workload range. Note here that the workload ranges
need to be small enough to not significantly affect the response
latency, requiring resource allocation changes, i.e., a single resource
allocation should work for the entire range. For instance, a range of
25 requests-per-second in TrainTicket microservice is a suitable
workload range.

Dynamicworkload-range.While in principlemultiple parallel
PEMA works, it may take a long time to reach efficient allocations
for every workload range. To accelerate the learning, we propose
a novel approach where we start with a few (two/three) larger
workload ranges and gradually split each range (i.e., parent range)
into smaller ranges (i.e., child range) until we reach our target
workload ranges. The goal here is to utilize learning from the parent
ranges to bootstrap the learning process for the child ranges. During
a range split, the parent range is divided into two equal child ranges.
We attach PEMA of the parent range to the child range with a higher
workload, whereas a new PEMA process is launched for the other
child range. The new PEMA uses the resource allocations of the
parent range as the starting point and requires fewer iterations to
reach an efficient resource level. The intuition for this approach is
that a resource allocation that satisfies SLO at a higher workload
should also satisfy SLO for a lower workload. Fig. 10(b) illustrates
the idea where we start with a workload range of 200∼400 and then
branch out to smaller ranges. The number on top of each range
identifies the PEMA process attached to this range. The original
PEMA process with id “#1” remains attached to the higher workload
ranges (e.g., 300∼400, 350∼400, 375∼400) as we split each range
into smaller ranges.

Dynamic response time target. While this approach bene-
fits the learning time, we need to tackle the latency variation due
to workload changes when the workload ranges are large (e.g.,
200∼400 rps for TrainTicket). We use one PEMA process for each
workload range, even during the initial stages with large ranges
(e.g., PEMA #1 for 300∼400 range in Fig. 10(b)). Each PEMA process
needs to make an SLO preserving resource allocation that works
for its entire range. To achieve this, instead of setting it to the SLO

specificity response time, we update R in Eqns. (3), (4), and (8) into
a function of workload λ as follows

R(λ) =m · (λ − λmax) + RSLO (9)

Here,m is a parameter that determines the change in latency per-
formance for a unit change in workload, λmax is the upper limit
of a workload range, and RSLO is the SLO specified response time.
Fig. 10(c) illustrates our approach of using a dynamic response time
target. We see from Eqn. (9) that when the workload is low within
a range, we set a conservative (i.e., lower than SLO) latency target
to intentionally allocate more resource than needed and therefore
allow headroom for higher workloads. This approach intentionally
makes conservative inefficient resource allocations for lower work-
load levels within a range. However, as the ranges get smaller as we
split them, the latency variation within a range also gets smaller,
and so is the inefficiency. On the other hand, we learn m at the
beginning of PEMA when we keep the resource allocation fixed for
a few time steps while the workload changes. We then use linear
regression on the workload vs response time (as in Fig. 10(a)) to
extractm. Note that we learnm only once at the beginning when
the workload ranges are large. During range splits, we keep the
m from the parent range. Now,m may change as we make the re-
source allocations change on the microservice. Nonetheless, as our
range split reaches the final workload ranges, we no longer need
the dynamic response target, andm becomes irrelevant.

3.5 Handling Transient Events
From our extended experiments we identify that PEMA is suscep-
tible to unnecessary SLO violations due to transient dips in the
response time. More specifically, after PEMA has already identified
an efficient allocation, a momentary/transient dip in response time
drives PEMA to make resource reductions only to meet with SLO
violation in the next iteration. To circumvent this, we adopt a mov-
ing average approach where we take the average of the response
time of K recent time steps and update the nt and ∆t as follows

nt = N ·min

(
R − 1

K
∑K
k=1 r

t−k

αR
, 1

)
(10)

∆t = β ·min

(
R − 1

K
∑K
k=1 r

t−k

αR
, 1

)
· 100% (11)

Note that, to ensure QoS, we do not apply this moving averaging
for detecting SLO violations. We still roll back resource allocations
based on the most recent response time as in Line 4 in Algorithm 1.

4 EVALUATION
We use our microservice application prototypes, TrainTicket,
SockShop, and HotelReservation, to evaluate PEMA. Here we
first discuss details of PEMA’s execution followed by performance
evaluation against other resource allocation strategies. We then
present how different parameters affect PEMA, and finally show
how PEMA can adapt to change in operating conditions.

0 10 20 30 40 50 60 70
Iterations

0

10

20

30

40

To
ta

l C
PU

High Exploration
Low Exploration
Optimum

(a) CPU allocation

0 10 20 30 40 50 60 70
Iterations

150

200

250

300

R
es

po
ns

e
(m

s) High Exploration
Low Exploration

SLO

(b) Response time

Figure 11: Execution of PEMA on SockShopwith different ex-
plorations. The exploration parameters in Eqn. (8) for high
exploration are A = 0.1,B = 0.01, and for low exploration are
A = 0.05,B = 0.005.

0 5 10 15 20 25 30 35
Iterations

30
40
50
60
70
80
90

To
ta

l C
PU

CPU

300
450
600
750
900
1050
1200

R
es

po
ns

e
(m

s)Response SLO

(a) TrainTicket

0 5 10 15 20 25 30
Iterations

0
5

10
15
20
25
30

To
ta

l C
PU

CPU

10
20
30
40
50
60
70

R
es

po
ns

e
(m

s)Response SLO

(b) HotelReservation

Figure 12: Execution of PEMA for TrainTicket and
HotelReservation.

4.1 Execution of PEMA
Here, we first show how PEMA finds efficient resource allocation
using iterative resource reduction, where the duration of each iter-
ation is two minutes. We then demonstrate how workload-aware
PEMA utilizes the dynamic workload range and response time tar-
get. Finally, we present a 36-hour long experiment with PEMA
making efficient resource allocation maintaining QoS.

Efficient resource allocation. Fig. 11(a) demonstrates the iter-
ative resource allocation and Fig. 11(b) shows the corresponding
response times for SockShop under a workload of 700 requests
per second for two different sets of exploration parameters. Here,
the optimum total CPU allocation is 8.8 which is identified using
extensive trial and error.

We see in Fig. 11(a) that when a higher exploration is used,
PEMA intentionally increases the resource allocation twice around
iteration 10 by going back to an older and higher CPU allocation.
We also see that PEMA with high exploration settles at an inef-
ficient allocation after 20 iterations as the response time reaches
SLO (Fig. 11(b)). However, due to exploitation, we see that around
iteration 45, it rolls back to an older allocation and finds its way to
the efficient allocation. Incidentally, PEMA with low exploration
also reaches the efficient resource allocation. We see a few SLO vio-
lations in Fig. 11(b) which are mitigated immediately by increasing
the CPU resource. Figs. 12(a) and 12(b) show the iterative resource
change and the corresponding response times for TrainTicket
and HotelReservation, respectively.

Regardless of the microservice implementation, we see that
PEMA can successfully find efficient resource allocations with only
a few unintentional SLO violations.

35 55 75 95 115
Iterations

40

45

50

55

To
ta

l C
PU

300 250 225 212 275

(a) Total CPU allocation over different
ranges

35 55 75 95 115
Iterations

600

700

800

900

1000

R
es

po
ns

e
(m

s)

SLO

(b) Response time of the iterations

Figure 13: Execution of PEMA on TrainTicketwith dynamic
workload range. (a) CPU allocation. (b) Response time.

0 6 12 18 24 30 36
Time (Hours)

100

350

600

850

1100

W
or

kl
oa

ds
 (R

PS
) Workloads

5

7

9

11

13

To
ta

l C
PU

Total CPU

(a)

0 6 12 18 24 30 36
Time (Hours)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

 R
es

po
ns

e

Instantaneous
Moving AVG.

(b)

Figure 14: Extended execution of PEMA in SockShop. (a)
Workload and CPU allocation. (b) Response time normal-
ized to SLO.

Dynamic workload range. Next, in Fig. 13(a), we show the
resource allocation of PEMA for TrainTicket as our workload
varies between 200 and 300 requests per second. The legend in
this figure indicates the upper limit on the workload range. The
workload range 300 (i.e., 200∼300) first splits into ranges 300 and 250
around iteration 50. The 250 range splits into 250 and 225 around
iteration 80, while the 300 splits into 300 and 275 right before
iteration 85. We see that each workload range finds an efficient
allocation within a few iterations as they start from an already good
allocation. Fig. 13(b) shows the corresponding the response time.
We see some SLO violations, which are mitigated by PEMA.

Extended execution.We run PEMA on SockShop for 36-hour
where we change the workloads between 200 and 1100 requests per
second following the workload pattern of Wikipedia collected from
[34]. Fig. 14(a) shows the workload pattern and the corresponding
resource allocation. We see that PEMA varies the total resource

125 225 325
Workloads (RPS)

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 C
PU

OPTM
PEMA

RULE

(a) TrainTicket

300 700 1100
Workloads (RPS)

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 C
PU

OPTM
PEMA

RULE

(b) SockShop

400 600 800
Workloads (RPS)

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 C
PU

OPTM
PEMA

RULE

(c) HotelReservation

Figure 15: Performance comparison of PEMA against opti-
mum (OPTM) and commercial autoscaler (RULE). The CPU
allocation is normalized to that of OPTM. PEMA is close to
optimum and saves up to 33% resource compared to RULE.

allocation with changing workload to maintain efficient allocation.
Note here that simply varying scaling resource allocation based on
workload does not work on microservices as the distribution of the
resource plays an important role in performance. Fig. 14(b) shows
the corresponding response times. We show both the instantaneous
(i.e., most recent) and moving average responses with a window size
of five. Recall that PEMA reduces resources based on the moving
average to avoid transient changes while tackling SLO violation
based on the instantaneous response time.

4.2 Performance evaluation
Benchmark strategies. We compare the resource allocation ef-
ficiency of PEMA against two benchmark strategies - optimum
(OPTM) and rule-based (RULE). In OPTM, we use an exhaustive
trial and error search to identify the best possible resource allo-
cation. We identify a resource allocation as optimum if a small
resource reduction (in our case 0.1 CPU) in any of the microser-
vices results in a SLO violation. Note that, OPTM cannot be used
in practice as it causes many SLO violations during trial and error.
It acts as the upper limit of resource efficiency achievable by any
resource manager. RULE is Kubernetes’ rule-based resource scaling
[35]. We chose RULE as a commercially available resource alloca-
tion algorithm to gauge PEMA’s efficiency improvement. We do
not compare PEMA to the ML-based resource allocation strategies
as they do not focus on resource allocation efficiency.

Comparison of resource allocation efficiency.We run each
of the three microservices applications using PEMA and the two
benchmark algorithms. Since OPTM requires extensive manual
search, we evaluate these algorithms for three different workload
levels for each microservice. Also, since PEMA is provably efficient,
we run PEMA several times under each setting and show the aver-
age resource allocation. We normalize each resource allocation for
each workload level using the resource allocation of OPTM.

Figs. 15(a), 15(b), and 15(c) show the resource allocations of
TrainTicket, SockShop, and HotelReservation, respectively for
the three different algorithms. We see that PEMA’s resource alloca-
tion efficiency is very close toOPTM. We also observe that PEMA’s
efficiency drifts away with increasing workload. On the other hand,
PEMA consistently beats RULE, saving as much as 33% on resource
allocation for SockShop at high workloads.

The performance comparison results demonstrate that despite
being a lightweight resource manager, PEMA can deliver close
to optimum resource allocation while retaining its capability to

0.1 0.3 0.5 0.7 0.9
α Values

0.7

1.0

1.3

1.6

N
or

m
al

iz
ed

 R
es

ou
rc

es Train Ticket
Sock Shop

(a) Resource allocation

0.1 0.3 0.5 0.7 0.9
α Values

0

15

30

45

SL
O

 V
io

la
tio

ns
 (%

)

Train Ticket
Sock Shop

(b) SLO violations

Figure 16: PEMA’s sensitivity to α for a β = 0.3 (a) Resource
allocation normalized to optimum. (b) SLO violations.

0.1 0.3 0.5 0.7 0.9
β Values

1.0

1.5

2.0

2.5

N
or

m
al

iz
ed

 R
es

ou
rc

es Train Ticket
Sock Shop

(a) Resource allocation

0.1 0.3 0.5 0.7 0.9
β Values

0
10
20
30
40
50

SL
O

 V
io

la
tio

ns
 (%

)

Train Ticket
Sock Shop

(b) SLO violations

Figure 17: PEMA’s sensitivity to β for a α = 0.5 (a) Resource
allocation normalized to optimum. (b) SLO violations.

tackle workload variation without any significant overhead (e.g.,
ML training).

4.3 Parameter Sensitivity
Here we study how the two parameters α and β affect PEMA. Recall
that α in Eqn. 3 determines how aggressively we reduce resource -
smaller α makes PEMA reduce more resource for the same differ-
ence between response time and SLO. β , on the other hand, deter-
mines themaximum percentage resource reduction in each resource
update iteration - smaller β results in smaller resource change and
vice versa. For this study, we run experiments on TrainTicket and
SockShop with workload 225 and 700 requests per second.

In Fig. 16(a), we show the change in resource allocation and in
Fig. 16(b), we show the number of SLO violations as we change α .
During this experiment, we keep β = 0.3. We see that both smaller
and larger values of α result in sub-optimal resource allocations for
TrainTicket and SockShop. This is because, for small α , PEMA is
too aggressive making many SLO violations (as seen in Fig. 16(b))
and force to revert back to inefficient allocations. For high α , on
the other hand, PEMA is slowed down prematurely at inefficient
allocations, although it suffers much fewer SLO violations.

Next, in Figs. 17(a) and 17(b), we show the impact of change
in β while we keep α = 0.5. Similar to our observation for α we
see that aggressive resource reduction due to higher values of β
results in sub-optimal resource allocation while also suffering from
many SLO violations. While PEMA is somewhat sensitive to both
α and β , we can set α and β for any system by tuning based on SLO
violation. We can take a conservative approach, start with large α
and small β , and gradually change their values keeping a close eye
on the SLO violations.

0 10 20 30 40 50
Time (Min)

400

500

600

700

800

W
or

kl
oa

ds
 (R

PS
) RPS

5.5

6.5

7.5

8.5

9.5

To
ta

l C
PU

Total CPU Burst

(a)

0 10 20 30 40 50
Time (Min)

150
170
190
210
230
250
270

R
es

po
ns

e
(m

s)

Response SLO Burst

(b)

Figure 18: Operation of PEMA with bursty workload in
SockShop. (a) Workload and CPU allocation. (b) Response
time.

0 5 10 15 20 25 30 35 40
Iterations

7

8

9

10

11

To
ta

l C
PU

1.8 GHz 2.0 GHz1.6 GHz CPU

150

200

250

300

350

R
es

po
ns

e
(m

s)

Response
SLO

Figure 19: Adaptability of PEMA to changes in CPU speed
for SockShop. The CPU speed change represents hardware
or software updates that alters the resource demand.

4.4 Adaptability
Workload bursts. PEMA can seamlessly handle sudden changes
in workload. In Fig. 18, we show how PEMA handles workload
bursts for SockShop by switching the resource allocation to the
workload range corresponding to the workload burst. Here, we con-
sider PEMA has already traversed through the resource reduction
iterations for all workload ranges. As shown in Fig. 18(a), we create
two workload burst of 10 minutes where the workload shoots up
from 400 RPS to around 750 RPS and 650 RPS. We see that PEMA
quickly changes the CPU allocation to keep the response time be-
low SLO (in Fig. 18(b)). Note here that, since we update the resource
allocation every two minutes, PEMA can react to a workload burst
lasting less than two minutes. Nevertheless, we can adapt PEMA
to respond to short-lived workload bursts by reducing the resource
update interval.

Operating environment. Our PEMA’s lightweight design en-
ables adaptability to operation condition changes. Such changes
may lead to different response times even when the resource alloca-
tion is not altered. We change our server’s CPU clock speeds from
1.8 GHz to 1.6 GHz and 2 GHz. These changes mimic a real-world
scenario where a hardware or software change in the microservice
alters the resource allocation dynamics. While we make the clock
speed changes, we use PEMA to manage SockShop’s resource. A
change in CPU frequency essentially changes the resource require-
ment for satisfying the SLO. Fig. 19 shows the CPU allocation and
the corresponding response time as we change the CPU frequency.
We see that PEMA can successfully change the resource allocation
to satisfy the SLO demonstrating its capabilities to adapt.

0 5 10 15 20 25 30 35 40 45
Iterations

6

7

8

9

10

To
ta

l C
PU

SLO = 250 ms SLO = 200 ms SLO = 300 msCPU

150

200

250

300

350

R
es

po
ns

e
(m

s)

Response
SLO

Figure 20: Adaptability of PEMA to changes in SLO for
SockShop. Dynamic SLO can be used to trade performance
for resource savings.

Dynamic SLO change. In Fig. 20, we show that PEMA can also
navigate towards efficient resource allocation as we change the
SLO. Dynamically changing SLO can be a useful approach for appli-
cations that are willing to trade performance for resource savings
to meet long-term goals such as cost budget [36]. Dynamic SLO es-
sentially adds another control knob for managing the microservices
application. Unlike existing ML-based microservice managements,
which will need to retrain with new SLO, PEMA can quickly adapt
to SLO changes and tune the resource accordingly.

5 RELATEDWORKS
Microservice autoscaling. Resource autoscaling has been exten-
sively studied in the public cloud domain [9, 37–40]. The recent
advancement of microservices has attracted a similar interest in
autoscaling of microservice-based applications in academic settings
[41, 42], as well as industrial settings [10, 20]. These autoscalers
implement rule-based approaches in resource management. For
example, Kubernetes [20] uses 90-th percentile resource usage in
recent samples to set CPU and memory allocations with a 15%
overprovisioning. Google Autopilot [10] uses 95-th percentile for
CPU and maximum for memory in the recent samples as a marker
for resource allocation in the upcoming interval. Alternative to the
rule-based approach, Google also uses ML-based autoscaling using
a combination of reinforcement learning and time series analysis
[43]. [44] also proposes rule-based autoscaling based on CPU and
memory utilization. However, rule-based autoscaling requires deep
application knowledge to set up the thresholds that can vary with
application. Meanwhile, [41] proposes hybrid autoscaling based on
analytical modeling using a layered queue network.

SHOWAR [45], in spirit, is the closest to our design approach.
It uses the variance in historical usage for vertical scaling and a
proportional-integral-derivative (PID) controller for horizontal scal-
ing. Nonetheless, SHOWAR still requires extensive tracing from
the CPU scheduler for its scaling decision. On the other hand, simi-
lar to our opportunistic resource reduction, [46] utilizes “resource
deflation” where preemptible virtual machines’ resources are dy-
namically controlled. However, while resource deflation gives away
transient resources to avoid preemption, we use resource reduc-
tion as a mean to find efficient allocation by carving redundant
resources.

SLO oriented resourcemanagement. In another line of work,
ML-based approaches are used to identify and mitigate root causes

of SLO violations inmicroservices [4, 12, 17–19]. For example, Sinan
[17] uses a neural network to estimate short-term performance and
a boosted trees model to estimate long-term performance to make
per tier resource allocation. Sinan allows SLO violations to identify
corner cases for resource allocation. Seer [19] requires fine-grained
tracing for building its model and SLO violating cases to train its
deep neural network to identify QoS violations. AlphaR [4], on the
other hand, uses neural graph networks to capture the complex
relationship between microservices and estimate application per-
formance for resource allocation. Despite their impressive results
in capturing minute details of microservices, they heavily depend
on data and are slow to dynamically changing conditions for mi-
croservices. In designing PEMA, we depart from using complicated
ML models and instead trade capturing microservice details for
agility and adaptability in resource management.

6 CONCLUDING REMARKS
In this paper, we proposed PEMA, an iterative feedback-based ap-
proach to autoscaling microservices. PEMA is lightweight as it only
requires the applications end-to-end performance and microservice-
level CPU utilization and CPU throttling to navigate to efficient
microservice resource allocation. Utilizing the lightweight design,
we also developed a novel approach of dynamic workload-ranging
to make workload-aware resource allocation with PEMA. Using
three prototype microservice implementations, we showed that
PEMA can achieve a performance close to the optimum resource
allocation and save as much as 33% resource compared to commer-
cially used rule-based resource allocation.

Limitations of PEMA’s current implementation. PEMA’s
implementation has several limitations that we plan to address
in its future iterations. First, when PEMA causes an unintentional
SLO violation, it rolls back the resource configuration in the next
time step. Hence, the application suffers from bad performance
during the entire resource update interval (e.g., 10 minutes). PEMA
can be improved by implementing higher resolution performance
monitoring (e.g., within 10 seconds), catching the SLO violations
early, and rolling back configuration to mitigate it. Further, PEMA
rolls back the configuration to the most recent configuration with-
out SLO violation. It does not take into account the degree of SLO
violation. For instance, a QoS violation where the response time
is significantly higher than the SLO indicates that PEMA should
roll back the configuration farther into the past to allocate more
resources. On the other hand, while PEMA logs the resource alloca-
tion of all microservices and response times in its allocation history
database, RHDb, for rollback and exploration purposes, it does not
utilize this information in its decision. Finally, PEMA in this study
only considers CPU resource allocation meanwhile memory and
I/O resources allocation can also be important for microservices’
performance depending on the nature of the application. Moreover,
PEMA also does not explicitly address the impacts and trade-offs
among vertical (i.e increasing resource in one node) and horizontal
(i.e., increasing the number of nodes) resource scaling.

7 ACKNOWLEDGMENTS
This work is supported in parts by the US National Science Foun-
dation under grant number CNS-2104925.

REFERENCES
[1] Y. Gan and C. Delimitrou, “The architectural implications of cloud microservices,”

IEEE Computer Architecture Letters, vol. 17, no. 2, pp. 155–158, 2018.
[2] Y. G. et al., “An open-source benchmark suite for microservices and their

hardware-software implications for cloud and edge systems,” in ASPLOS, 2019.
[3] R. e. a. Heinrich, “Performance engineering for microservices: research challenges

and directions,” in ICPE, pp. 223–226, 2017.
[4] X. H. et al., “Alphar: Learning-powered resource management for irregular, dy-

namic microservice graph,” in IPDPS, 2021.
[5] E.Wolff,Microservices: flexible software architecture. Addison-Wesley Professional,

2016.
[6] “The definition of microservice.” https://martinfowler.com/microservices/, 2022.

Accessed: 01/26/2022.
[7] “Introduction to microservices.” https://www.nginx.com/blog/introduction-to-

microservices. Accessed: 01/20/2022.
[8] H. Z. et al., “Overload control for scaling wechat microservices,” in SoCC, 2018.
[9] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch, “Autoscale:

Dynamic, robust capacity management for multi-tier data centers,” ACM Trans-
actions on Computer Systems, vol. 30, 2012.

[10] “Google cloud autoscale.” https://cloud.google.com/compute/docs/load-
balancing-and-autoscaling. Last Accessed: 01/05/2022.

[11] “Azure autoscale.” https://azure.microsoft.com/en-us/features/autoscale/. Last
Accessed: 01/05/2022.

[12] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, “FIRM: An intelligent
fine-grained resource management framework for slo-oriented microservices,”
in OSDI, 2020.

[13] C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for heteroge-
neous datacenters,” ACM SIGPLAN Notices, vol. 48, no. 4, pp. 77–88, 2013.

[14] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and qos-aware cluster
management,” ACM SIGPLAN Notices, vol. 49, no. 4, pp. 127–144, 2014.

[15] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “Towards energy
proportionality for large-scale latency-critical workloads,” in ISCA, 2014.

[16] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis, “Heracles:
Improving resource efficiency at scale,” in ISCA, 2015.

[17] Y. Zhang, W. Hua, Z. Zhou, G. E. Suh, and C. Delimitrou, “Sinan: Ml-based and
qos-aware resource management for cloud microservices,” in ASPLOS, 2021.

[18] Y. G. et al., “Sage: practical and scalable ml-driven performance debugging in
microservices,” in ASPLOS, 2021.

[19] Y. G. et al., “Seer: Leveraging big data to navigate the complexity of performance
debugging in cloud microservices,” in ASPLOS, 2019.

[20] “Kubernetes autoscaler.” https://github.com/kubernetes/autoscaler. Last Ac-
cessed: 01/27/2022.

[21] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding, “Fault analysis and
debugging of microservice systems: Industrial survey, benchmark system, and
empirical study,” IEEE Transactions on Software Engineering, vol. 47, no. 2, pp. 243–
260, 2021.

[22] “Sock shop microservice demo.” https://microservices-demo.github.io/. Accessed:
08/31/2021.

[23] “Docker: Empowering app development for developers.” https://www.docker.
com/. Accessed: 01/20/2022.

[24] “Kubernetes: Production grade container orchestration.” https://kubernetes.io/.
Accessed: 01/20/2022.

[25] “Practical efficient microservice autoscaling.” https://github.com/rajibhossen/
microservice-autoscaling.

[26] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao, “Benchmarking
microservice systems for software engineering research,” pp. 323–324, 2018.

[27] “grpc: A high performance, open source universal rpc framework.” https://grpc.io/.
Accessed: 01/20/2022.

[28] “Prometheus - from metrics to insights.” https://prometheus.io/. Last Accessed:
10/08/2021.

[29] “Linkerd: A different kind of service mesh.” https://linkerd.io/. Accessed:
01/15/2022.

[30] “Jaeger - end to end tracing distributed tracing.” https://www.jaegertracing.io/.
Last Accessed: 10/08/2021.

[31] A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for cloud mi-
croservice applications,” in ICPE, 2019.

[32] “Amazon aws autoscale.” https://docs.aws.amazon.com/autoscaling/index.html.
Last Accessed: 01/05/2022.

[33] “Kubernetes cpu throttling.” https://vmblog.com/archive/2021/10/07/kubernetes-
cpu-throttling-the-silent-killer-of-response-time-and-what-to-do-about-
it.aspx. Accessed: 10/26/2021.

[34] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis for
decentralized hosting,” Computer Networks, vol. 53, no. 11, pp. 1830–1845, 2009.

[35] “Kubernetes horizontal pod autoscaler.” https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/. Last Accessed: 01/05/2022.

[36] M. A. Islam, S. Ren, A. H. Mahmud, and G. Quan, “Online energy budgeting
for cost minimization in virtualized data center,” IEEE Transactions on Services
Computing, vol. 9, no. 3, pp. 421–432, 2015.

[37] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications in clouds:
A taxonomy and survey,” in ACM Comput. Surv., vol. 51, (New York, NY, USA),
Association for Computing Machinery, July 2018.

[38] A. F. Baarzi, T. Zhu, and B. Urgaonkar, “Burscale: Using burstable instances for
cost-effective autoscaling in the public cloud,” in SoCC, 2019.

[39] V. Kalavri, J. Liagouris, M. Hoffmann, D. Dimitrova, M. Forshaw, and T. Roscoe,
“Three steps is all you need: fast, accurate, automatic scaling decisions for dis-
tributed streaming dataflows,” in OSDI, 2018.

[40] M. Wajahat, A. A. Karve, A. Kochut, and A. Gandhi, “Mlscale: A machine learning
based application-agnostic autoscaler,” Sustain. Comput. Informatics Syst., vol. 22,
pp. 287–299, 2019.

[41] A. U. Gias, G. Casale, and M. Woodside, “Atom: Model-driven autoscaling for
microservices,” in ICDCS, 2019.

[42] F. Rossi, V. Cardellini, and F. L. Presti, “Hierarchical scaling of microservices in
kubernetes,” in ACSOS, 2020.

[43] K. R. et al., “Autopilot: Workload autoscaling at google scale,” in Proceedings of
the Fifteenth European Conference on Computer Systems, 2020.

[44] A. Kwan, J. Wong, H.-A. Jacobsen, and V. Muthusamy, “Hyscale: Hybrid and
network scaling of dockerized microservices in cloud data centres,” in ICDCS,
2019.

[45] A. F. Baarzi and G. Kesidis, “Showar: Right-sizing and efficient scheduling of
microservices,” in SoCC, 2021.

[46] P. Sharma, A. Ali-Eldin, and P. Shenoy, “Resource deflation: A new approach for
transient resource reclamation,” in EuroSys, 2019.

https://martinfowler.com/microservices/
https://www.nginx.com/blog/introduction-to-microservices
https://www.nginx.com/blog/introduction-to-microservices
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://cloud.google.com/compute/docs/load-balancing-and-autoscaling
https://azure.microsoft.com/en-us/features/autoscale/
https://github.com/kubernetes/autoscaler
https://microservices-demo.github.io/
https://www.docker.com/
https://www.docker.com/
https://kubernetes.io/
https://github.com/rajibhossen/microservice-autoscaling
https://github.com/rajibhossen/microservice-autoscaling
https://grpc.io/
https://prometheus.io/
https://linkerd.io/
https://www.jaegertracing.io/
https://docs.aws.amazon.com/autoscaling/index.html
https://vmblog.com/archive/2021/10/07/kubernetes-cpu-throttling-the-silent-killer-of-response-time-and-what-to-do-about-it.aspx
https://vmblog.com/archive/2021/10/07/kubernetes-cpu-throttling-the-silent-killer-of-response-time-and-what-to-do-about-it.aspx
https://vmblog.com/archive/2021/10/07/kubernetes-cpu-throttling-the-silent-killer-of-response-time-and-what-to-do-about-it.aspx
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Microservice Prototypes
	2.2 Performance Monitoring and Resource Allocation
	2.3 Challenges in Microservice Resource Management

	3 Design of PEMA
	3.1 Design Principles of PEMA
	3.2 Supporting Results for Design Rationales
	3.3 PEMA
	3.4 Workload-Aware Resource Allocation
	3.5 Handling Transient Events

	4 Evaluation
	4.1 Execution of PEMA
	4.2 Performance evaluation
	4.3 Parameter Sensitivity
	4.4 Adaptability

	5 Related Works
	6 Concluding Remarks
	7 Acknowledgments
	References

