
FedCime: An Efficient Federated Learning
Approach For Clients in Mobile Edge Computing

Paul Agbaje∗, Afia Anjum∗, Zahidur Talukder∗, Mohammad Islam∗, Ebelechukwu Nwafor†, Habeeb Olufowobi∗
∗Department of Computer Science and Engineering, University of Texas at Arlington

†Department of Computing Sciences, Villanova University
{pauloluwatowoju.agbaje, habeeb.olufowobi}@uta.edu

Abstract—Federated learning (FL) enables collaborative train-
ing of a global model using localized data from multiple devices.
However, in resource-constrained mobile edge computing (MEC)
environments, non-independent and identically distributed (non-
IID) data generated by these devices poses challenges for tradi-
tional FL algorithms like Federated Averaging (FedAvg), leading
to decreased accuracy of the global model. In addition, dynamic
mobile networks with intermittent connectivity, dropouts, and
high migration rates hinder the communication of model updates
to the central server. To address these challenges, we present
FedCime, a novel tier-based FL approach that selects high-utility
mobile clients likely to complete training to replace migrating
clients during the round of training. Our evaluation shows
that FedCime is scalable and significantly improves training
performance in terms of accuracy and computational efficiency
compared to state-of-the-art FL algorithms.

Index Terms—Federated learning, machine learning, mobile
edge computing, data heterogeneity

I. INTRODUCTION

With the proliferation of sensors and their increasing con-

nectivity to the Internet, many Internet of Things (IoT) devices

have emerged as important data sources for machine learning

(ML) applications. These devices gather data and send them

to the cloud for training machine learning algorithms or

inference. However, the growing number of IoT devices and

the associated data raise challenges in terms of data privacy,

integration, security, and latency, affecting the efficiency of

ML applications. Federated Learning (FL) addresses these

challenges by allowing distributed clients to cooperatively

train ML models on decentralized data across multiple edge

devices. FL reduces latency by enabling local training with

client data, and clients update a central server with their model

weights, as shown in Fig. 1. In FL, clients iteratively download

the global model weights from the cloud, locally train their

models, and upload the new weights to the server. The cloud

server aggregates the clients’ updates to improve the model

and shares the global model weights with all the clients for

the next round of training. This process can continue until

training converges [1].

One major challenge of FL is the variation in data distri-

bution among clients, including differences in class distribu-

tion, quality, and quantity. This variation is known as non-

independently and identically distributed (non-IID) data and

can lead to degraded training accuracy [2]. FL also faces

challenges due to dynamic device availability and high traffic

A

Federator

Local Training Local Training Local Training

Global Model

Local ModelLocal Model Local Model

AAA

Model
Aggregation

G
lo

ba
l W

ei
gh

ts Global Weights

Lo
ca

l U
pd

ate
s

Lo
ca

l U
pd

at
es

Local Updates

Fig. 1: Overview of federated learning with different devices

from numerous devices in each training round. Therefore, it

becomes necessary to select clients strategically to improve

training performance and model accuracy in each round.

However, communication between the selected clients and a

single central server can become a bottleneck, slowing down

the training process. To address this challenge, edge servers

in mobile edge computing (MEC) bring computational power

closer to devices in mobile environments. The edge servers

facilitate a hierarchical setting to coordinate clients within

their vicinity, reducing traffic load on core cloud networks

and minimizing latency in end-to-end communication between

clients and servers [3]. Although MEC servers can assist in FL

aggregation, the dynamic nature of the network due to clients’

mobility still poses the challenge of maintaining a consistent

set of devices for any training round, thereby affecting the

overall performance of the FL model. The challenges become

even more complicated when the federator does not have

information about each client’s location to estimate the dropout

rate due to migration out of its coverage area.

Our contribution. We propose FedCime to address the

mobility challenge in FL. FedCime actively selects clients

likely to remain within the federator’s coverage area during

the majority of training. The selection strategy is based on

the client’s delay metrics, where we assess the delays of each

client’s transmission when sending updates for aggregation.

Using this metric, we group clients into different tiers and

prioritize clients in tiers with lower delays for the next round

of training. Also, to mitigate any dropout that might occur,

we choose some additional clients for training. Furthermore,

to address the issue of data heterogeneity, we prioritize model

215

2023 IEEE International Conference on Edge Computing and Communications (EDGE)

2767-9918/23/$31.00 ©2023 IEEE
DOI 10.1109/EDGE60047.2023.00042

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

dg
e

C
om

pu
tin

g
an

d
C

om
m

un
ic

at
io

ns
 (E

D
G

E)
 |

97
9-

8-
35

03
-0

48
3-

1/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
ED

G
E6

00
47

.2
02

3.
00

04
2

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 16,2023 at 00:30:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Traffic flow changes. The traffic volume in 840

continuous 15-minute intervals for 3 locations in Northern

Virginia/Washington D.C. capital region [4].

(a) Impact of clients migration with-
out replacement

(b) Impact of clients migration with
replacement

Fig. 3: (a) Accuracy of the global model with different

migration rates without replacement using Non-IID data (b)

Accuracy of the global with different migration rates with

replacement using Non-IID data.

updates with similar characteristics by analyzing updates from

reserve clients selected based on their aggregated weights.

Specifically, we calculate the cosine similarity of the aggre-

gated weights between the reserved and new clients and select

new clients with similar distance values to improve the model’s

performance. Overall, FedCime is an effective solution for

addressing the challenges of mobility and data heterogeneity

in federated learning, particularly in highly dynamic networks

like vehicular networks.

II. MOTIVATION

Our approach is motivated by the potential negative impact

of data heterogeneity and client mobility on the performance

of the global model in FL. To assess this impact, we perform

experiments with varying numbers of clients using both IID

and non-IID data, as well as in different network scenarios,

and analyze their effect on the training accuracy.

1) Impact of mobility: In FL, mobile devices in edge

networks may not be consistently accessible since the number

of nodes in a particular region may not stay the same for an

extended period of time, as shown in Fig. 2, using a Traffic

Flow Prediction Dataset [4]. In our experiments, we investigate

the impact of client migration on the performance of the

global model. We show two scenarios in Fig. 3: one where

clients migrate out of the federator’s coverage area without

replacement and another where they are replaced by other

clients using the Federated Averaging (FedAvg) algorithm.

The results reveal that migration without replacement leads

to accuracy and convergence degradation, while replacing the

clients results in better convergence but with some oscillation

(a) Impact of heterogeneous data
and available number of clients

(b) Naive solution using oversam-
pling

Fig. 4: (a) Impact of Non-IID data and the number of clients

on the global model accuracy (b) Impact of the naive solution

with 40% migration rate with and without replacement.

due to non-IID data. Using FedAvg, we observe that as

the migration rate increases, the accuracy of the algorithm

decreases. These findings highlight the need for a technique

that limits the effect of client migration and non-IID data on

accuracy and convergence.

2) Impact of data heterogeneity: In networked systems such

as the Internet of Vehicles (IoV), clients involved in FL can

have heterogeneous and non-IID datasets due to variations in

the data captured by different vehicles at different times and

locations. We conducted experiments to assess the impact of

heterogeneous data on the training performance of 200 clients

over 200 rounds using both IID and non-IID MNIST datasets.

The results presented in Fig. 4(a) demonstrate that using

non-IID data leads to poorer accuracy over the 200 training

rounds than when clients use uniformly distributed IID data.

Moreover, the results show that having fewer clients available

for training also degrades the accuracy of the global model.

Since FedAvg does not address the effect of data heterogeneity,

the model’s accuracy decreases when clients with non-IID data

participate in training. Additionally, the accuracy decreases

with FedAvg when the number of participating clients reduces.

3) Naive approach: To minimize the negative impact of

dropout on the model’s accuracy, we sample additional clients

for training and randomly select weight updates from them

during aggregation. Our experiment involves allowing a 40%

migration rate during training. If 𝑁 clients drop out, we sample

𝑁 weight updates from the additional clients randomly pre-

selected by the federator. We then compare the performance

of the naive approach with that of clients that migrate with

and without replacement. Fig. 4(b) demonstrates that the

naive approach significantly mitigates the effect of migration.

Furthermore, this result highlights that limiting migration’s

impact can improve the overall performance of FL.

Our work explores the challenges of training an FL model in

a heterogeneous mobile network, such as vehicular networks,

where sensors are diverse and data quality may be degraded. In

contrast to the extreme cases studied in this section, we assume

that some clients have IID data and others have non-IID data of

varying quality due to sensor age and resource constraints. To

simulate this scenario, we evaluate the model’s accuracy using

different dropout rates and 30% of clients with non-IID data,

where we intentionally degrade their data quality by adding

Gaussian noise. Our experiment (Fig. 5) shows that as clients

216

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 16,2023 at 00:30:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Accuracy with 30%

non-IID data. As the migra-

tion rate increases from 0.1

to 0.3, the accuracy of the

global model drops.

FedCime

Oversampling

Performance with migration

Optimal Performance

1. Prioritize reserved clients with close
performance with existing clients

2. Prioritize clients with high utility

Migration Rate

A
cc

u
ra

cy

Fig. 6: Performance of Fed-

Cime. FedCime prioritizes

high utility clients and re-

served clients similar to those

that did not migrate.

drop out, the federator can replace them with new clients

entering the network with high-quality data, thus improving

the model instead of degrading it. This observation motivates

our approach to search for clients that enhance the model’s

accuracy as the migration rate increases.

4) Challenges: Our motivating examples have shown that

the naive approach can reduce the impact of migration in mo-

bile environments. However, this method does not address two

significant challenges: the limitation of dropout rates during

training and the reduction of the effect of data heterogeneity

on the global model. FedCime extends this approach by

prioritizing clients with similar performance to the remaining

clients and those with high utility, thereby improving the

model’s performance even further, as shown in Fig. 6.

III. FEDCIME DESIGN DETAILS

In our proposed FL architecture, all clients can communicate

with the federator, but we consider the scenario where clients

are mobile, and their connectivity to the federator can vary

with mobility. As a result, a client’s poor connectivity and lim-

ited computational power can lead to the straggler effect since

it cannot efficiently communicate its update for aggregation.

Additionally, if a mobile node migrates, it will no longer be

able to communicate with either the federator or other nodes.

A. Client Selection

The federator selects a subset of clients for training and

monitors the time it sends the global model to all clients

and the time each client returns their local update. To iden-

tify stragglers and migrating clients, the federator calculates

the mean response time of results obtained after profiling,

then drops clients with high response time. We assume that

clients farther away from the federator will take longer to

send updates. We express the delay metric of each client as

𝑇𝑘 = 𝑇𝑢
𝑘 − 𝑇𝑑

𝑘 , where 𝑇𝑑
𝑘 is the time when client 𝐶𝑘 starts

downloading the global model from the federator, and 𝑇𝑢
𝑘 is

the time the federator receives an update from client 𝐶𝑘 .

After obtaining the delay metrics from each client, the

federator divides clients into 𝑛 tiers using the following

equation:

𝑇𝑖𝑒𝑟𝑘 =
⌈ 𝑇𝑘
𝑇𝑚𝑎𝑥

× 𝑁𝑡𝑖𝑒𝑟𝑠

⌉
(1)

where 𝑇𝑚𝑎𝑥 is the maximum delay among all clients, and

𝑁𝑡𝑖𝑒𝑟𝑠 is a predetermined number used by the federator to

determine the number of allowed tiers. Eq. 1 groups clients

based on their delay metrics and assign clients with high delays

to the highest tier. The federator can then use this information

to retain clients in lower tiers and replace clients in tier 𝑁 in

the next round of training.

B. Improved Client Selection and Dropout Mitigation

Although the tier-based method limits the number of migrat-

ing clients that will be chosen over the total training rounds,

we assume that some clients will still migrate or drop out due

to other factors, such as slow computation speed. To mitigate

the dropout effect, we allow the federator to oversample by

choosing 𝐾 clients that are more than the actual number

of clients that will be used for aggregation. From this set

of clients, the federator will choose 𝛼𝐾 clients for training

and keep the remaining (1 − 𝛼)𝐾 as reserve clients. Here,

𝛼 is the proportion of clients selected for aggregation and

0 < 𝛼 ≤ 1. If any client drops out, the federator will replace

such clients from the reserve clients based on the similarity of

their updates.

Similarity Scores: After receiving updates from 𝛼𝐾 se-

lected clients, the federator aggregates their weights. If there

is any dropout, the federator checks the updates of the reserved

clients and calculates their similarities to the 𝛼𝐾 clients that

did not migrate. We use cosine similarity, commonly used

in literature for calculating similarities in machine learning

applications, as the measure of similarity [5]. The cosine

similarity for each client is calculated using the following:

𝑆𝑘 =
〈Δ𝜃𝑐𝑘 ,Δ𝜃𝑐𝑎 〉
‖Δ𝜃𝑐𝑘 ‖‖Δ𝜃𝑐𝑎 ‖

(2)

where 〈Δ𝜃𝑐𝑘 ,Δ𝜃𝑐𝑎 〉 gives the dot product between the model

update Δ𝜃𝑐𝑘 from client 𝑘 and the aggregated weights Δ𝜃𝑐𝑎
from the selected 𝛼𝐾 clients. ‖Δ𝜃𝑐𝑘 ‖‖Δ𝜃𝑐𝑎 ‖ is the product of

the norms of the updates.

Similarity Weights: Although the reserve clients are now

weighted such that the clients with updates that are similar to

the originally sampled 𝛼𝐾 clients can be selected, it is also

important to use updates that will be significant to the global

model. Since a client’s loss will be high if the model is not

adequately generalized to its dataset, we use each client’s loss

as a metric to determine the weights given to its similarity

scores. The similarity weight for each client can be calculated

using the following:

𝛾𝑘 = 1 −
𝜏

𝑒𝐿𝑜𝑠𝑠
2
𝑘

(3)

where 𝐿𝑜𝑠𝑠𝑘 is the loss from client 𝑘 and 𝜏 is a scaling factor.

Using the 𝛾𝑘 calculated for each client, the federator
updates the similarity score using 𝑆𝑘 := 𝛾𝑘𝑆𝑘 .

After calculating the similarity, the federator sorts the re-

serve clients in non-increasing order of their similarity scores,

i.e., 𝐶′ = {𝑆
′

1, 𝑆
′

2, ..., 𝑆
′

𝑛}, where 𝑆
′

1 ≥ 𝑆
′

2 ≥ ... ≥ 𝑆
′

𝑛 and

𝑛 = (1− 𝛼)𝐾 . The federator then chooses the first few clients

217

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 16,2023 at 00:30:02 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Improved Client Selection Algorithm

Require: 𝑀: number of local epochs; 𝐾: number of clients to be
oversampled; 𝛼: proportion of clients selected for aggregation;
𝜏: scaling factor for similarity weight.

Ensure: Global model 𝜃.
1: Initialization:
2: 𝐷𝑙 ← 0 {initialize the number of dropped clients}
3: C ← random sample of 𝐾 clients {oversample clients for train-

ing}
4: S ← random subset of 𝛼𝐾 clients from C {select subset of

clients for training}
5: R ← remaining clients in C {reserve clients for replacement}
6: 𝐴𝑙 ← |S| {number of expected updates}
7: if clients dropped out then
8: 𝐷𝑙 ← |𝐴𝑙 | − |S| {update number of dropped clients}
9: for 𝑘 ∈ S do

10: Δ𝜃𝑐𝑎 ← weighted aggregation of updates from S
11: end for
12: for 𝑘 ∈ R do
13: Δ𝜃𝑐𝑘 ← local update from 𝑘 with 𝑀 epochs

14: 𝑆𝑘 ←
〈Δ𝜃𝑐𝑘 ,Δ𝜃𝑐𝑎 〉
‖Δ𝜃𝑐𝑘 ‖ ‖Δ𝜃𝑐𝑎 ‖

{calculate similarity score}

15: 𝛾𝑘 ← 1 − 𝜏

𝑒
𝐿𝑜𝑠𝑠2

𝑘

{calculate similarity weight}

16: 𝑆𝑘 ← 𝛾𝑘𝑆𝑘 {update similarity score}
17: end for
18: C′ ← sort R in non-increasing order of similarity scores

{sort reserve clients by similarity score}
19: for 𝑖 ∈ [1, 𝐷𝑙] do
20: S ← S∪C′𝑖 {replace dropped clients with reserve clients}
21: end for
22: 𝜃 ← update global model with aggregate of update in 𝐶
23: end if

from 𝐶′ needed to replace the dropped clients from the initial

set of selected 𝛼𝐾 clients.

Model Aggregation: Using the model updates received

from all selected clients, the federator aggregates the updates

to compute the new weight for the global model.

A summary of the approach is given in Algorithm 1. In

lines 1-6, the federator initializes the number of dropped

clients to zero, selects clients for training, and calculates the

number of expected updates. After all selected clients send

their updates, the federator checks if there is any dropout,

aggregates the weights, and calculates the similarity scores

for reserved clients in lines 7-17. In line 18, the federator
sorts the reserve clients based on their similarity scores and

replaces the dropped clients in lines 19-20. Line 22 shows the

global weight update after replacement.

IV. EVALUATION

We perform simulation experiments with one federator and

𝐾 clients to evaluate our proposed approach. We test the

performance of FedCime using two commonly used datasets—

MNIST and FashionMNIST—and compare it with FedAvg,

FedProx, and the oversampling technique. To simulate de-

graded data in wireless sensors, we add Gaussian noise

𝑥 = 𝑥 + 𝜖 , where 𝜖 ∼ N(𝜇, 𝜎2), 𝜇 = 0, and 0 < 𝜎2 ≤ 1.

Similar to Talukder and Islam [6], we used a logistic

regression classifier for our experiments targeting sensors

in MEC using Pytorch and Pysyft rather than TensorFlow.

To preprocess the data, we flattened the input features and

encoded the labels using one-hot encoding. We utilized the

softmax activation function for the MNIST and FashionM-

NIST datasets and set the L1 and L2 regularization values to

TABLE I: Accuracy of FL algorithms.

Datasets Algoirthms Migration Rates
10% 20% 30%

MNIST FedAvg 75.51 76.59 77.72
FedProx 75.75 76.51 76.84

Oversampling 76.02 75.69 77.74
FedCime 76.64 78.37 80.08

FashionMNIST FedAvg 64.76 64.84 65.11
FedProx 64.59 64.79 64.88

Oversampling 64.95 64.89 65.13
FedCime 64.99 66.01 66.83

0.01. We chose the Adam optimizer for efficient optimization

and the categorical cross-entropy loss function to measure the

dissimilarity in predicted and true class probabilities.

A. Evaluation Results
1) Comparison with baselines: We evaluate the perfor-

mance of FedCime against the baselines. The result of our

evaluation is presented in Table I. We varied the migration rate

from 10% to 30% in each round, with 50% of clients having

IID and non-IID data each. For MNIST, the best performance

of the FedAvg algorithm is 77.72%. FedProx handles data

heterogeneity better than FedAvg when the migration rate is

10%, achieving an accuracy of 75.75%. Using the oversam-

pling approach, the accuracy is improved to 77.74% when the

migration rate is 30%. The results show that FedCime achieves

higher accuracy of 76.64%, 78.37%, and 80.08% for 10%,

20%, and 30% migration rates, respectively, outperforming

all other baselines. The accuracy increases with increasing

migration when available IID clients join the network, but

FedCime leverages this advantage more effectively than other

algorithms.
Since the FashionMNIST dataset is more complex than

MNIST, the accuracy is lower compared to MNIST for all

algorithms. However, FedCime algorithm outperforms the

baselines, improving the accuracy by up to 1.95% in the best

case. The oversampling approach improves the performance of

both FedAvg and FedProx, reaching an accuracy of 65.13%

compared to FedAvg’s 65.11% and FedProx’s 64.88% accu-

racy when the migration rate is 30%. However, the ability

of FedCime to select clients that significantly improve the

model’s performance helps it to perform better than other

algorithms. By using FedCime, we improve the accuracy of

the models to 64.99%, 66.01%, and 66.83% for 10%, 20%,

and 30% migration rates, respectively.
2) Convergence analysis: We evaluate the convergence of

FedCime with existing approaches as shown in Fig. 7 and

Fig. 8. The figures show the accuracy of each technique

for 10%, 20%, and 30% migration rates. Using MNIST,

Fig. 7 illustrates that all algorithms converge smoothly for

a migration rate of 10%. However, FedCime converges with

higher accuracy compared with other baselines. As the degree

of migration increases, FedCime performs better compared to

other baseline algorithms, as evident in Fig. 7(b) and Fig. 7(c),

where FedCime selects better clients and converge with higher

accuracy. The convergence for FashionMNIST is noisier due

to its higher complexity than the MNIST dataset, however,

in most cases, FedCime performs better with higher accuracy

than the baselines, improving the model’s performance.

218

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 16,2023 at 00:30:02 UTC from IEEE Xplore. Restrictions apply.

(a) 0.1% migration rate (b) 0.2% migration rate (c) 0.3% migration rate

Fig. 7: Performance of FedCime with MNIST dataset using different rates of migration and 0.5% Non-IID

(a) 0.1% migration rate (b) 0.2% migration rate (c) 0.3% migration rate

Fig. 8: Performance of FedCime with FashionMNIST dataset using different rates of migration and 0.5% Non-IID

(a) FedCime’s computation and FedAvg’s aggregation time (b) FedCime’s computation and FedAvg’s overall training time

Fig. 9: Performance of FedCime’s computation time with FedAvg.

3) Computation cost analysis: We perform a computational

analysis of FedCime, i.e., we evaluate the time and resource

required and compare the overhead with FedAvg’s weights

aggregation time. The weights aggregation time is the duration

it takes for the server to find the weighted average of all

weights uploaded by the clients after completing local training.

We compare this time to the time required to complete the

procedures in Algorithm 1. We use three datasets for our eval-

uation: FEMNIST, MNIST, and CIFAR-10. We used logistic

regression for FEMNIST and MNIST, while for CIFAR-10,

we used a one-block VGG network [7].

Fig. 9(a) shows that FedCime’s overhead is comparable to

the aggregation time when using logistic regression. Due to

the number of parameters in the VGG network when using

CIFAR-10, the time for FedCime’s computation is higher than

the aggregation time. Comparing the overhead of FedCime’s

computation with the overall training and weight aggregation

time for all clients in the network, Fig. 9(b) shows that

the overhead of FedCime’s computation is negligible for all

datasets and networks. Therefore, the demonstrated overhead

of FedCime’s computation in Fig. 9(a) becomes insignificant

in the context of the overall aggregation time.

4) Is FedCime scalable?: We evaluate FedCime across

different scales of clients with the MNIST dataset, terminating

the training after 150 rounds. We choose 𝐾 clients and

randomly divide the training set among the 𝐾 clients, where

we test 100 ≤ 𝐾 ≤ 1000. Fig. 10 shows that FedCime out-

performs other algorithms with a small number of clients, and

continues to perform well as the number of clients increases.

Furthermore, our algorithm performs better than FedProx, as

FedProx converges slowly. Combining FedCime with FedProx

will enhance its performance, as we have accomplished with

FedAvg.

219

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 16,2023 at 00:30:02 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: Accuracy with different numbers of clients Fig. 11: FedCime’s improvement despite migration

5) How good is FedCime at replacing migrating clients?:
In this experiment, we track the number of migrating clients

and calculate FL accuracy. We compare the accuracy of

FedAvg and FedCime’s in each training round. As depicted in

Fig. 11, FedCime can leverage migration better than FedAvg.

In the extreme scenarios where many clients migrate, Fed-

Cime is capable of selecting clients that enhance the model’s

accuracy rather than diminish it. This result implies that

FedCime can enhance traditional FL techniques and ensure

that mobile clients can participate effectively in FL training.

V. RELATED WORK

FL is a privacy-preserving ML approach that uses ap-

proaches such as the FedAvg algorithm to allow global av-

eraging on a server after completing local stochastic gradient

descent on a subset of devices [8]. While FedAvg has been

shown to converge under realistic settings, data heterogeneity

can slow down the convergence rate [9]. Techniques such

as sharing common data [10] and FedProx [11] have also

been proposed to address this challenge. However, sharing

common data may violate clients’ security policies, while

the FedProx requires parameter tuning that may lead to slow

convergence. Other optimization techniques, such as Yogi and

CSFedAvg [12], [13] have also been proposed, but they do not

fully account for migration in MEC environments.

Split learning (SL) enables clients in FL training to offload

some layers of their ML models to maximize efficiency.

Tharpa et al. [14] introduced SplitFed, a technique combining

SL and FL to reduce computation and improve model robust-

ness. However, it does not address the challenge of device

mobility, which can impact training accuracy when devices

move out of the network before training is completed. Wu

et al. [15] proposed FedAdapt, an adaptive framework that

accounts for dynamic network bandwidth and heterogeneous

devices during training. The approach uses a reinforcement

learning agent to make offloading decisions. Cox et al. [16]

proposed Aergia, a technique that boosts training speed in

FL by allowing slow clients to freeze part of their models

and transfer the frozen layers to a faster client for training.

However, these techniques are unsuitable for mobile devices

due to the challenge of device mobility.

VI. CONCLUSION

In this paper, we present FedCime, an efficient and effective

tier-based approach for FL in MEC environments to minimize

the effect of non-IID and heterogeneous datasets while en-

suring better convergence and accuracy. FedCime leverages

client migration in mobile networks to select clients that can

improve the accuracy of the global model. We have shown

that FedCime is scalable and resilient to client migrations and

can efficiently select clients likely to remain in the training

process for extended periods and will improve the model’s

accuracy, thereby ensuring that clients in mobile environments

can participate effectively in the training process.

REFERENCES

[1] H. Ludwig and N. Baracaldo, “Introduction to federated learning,” in
Federated Learning. Springer, 2022, pp. 1–23.

[2] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[3] R. Yu and P. Li, “Toward resource-efficient federated learning in mobile
edge computing,” IEEE Network, vol. 35, no. 1, pp. 148–155, 2021.

[4] L. Zhao, O. Gkountouna, and D. Pfoser, “Spatial auto-regressive depen-
dency interpretable learning based on spatial topological constraints,”
ACM Transactions on Spatial Algorithms and Systems (TSAS), vol. 5,
no. 3, pp. 1–28, 2019.

[5] S. Sohangir and D. Wang, “Improved sqrt-cosine similarity measure-
ment,” Journal of Big Data, vol. 4, no. 1, pp. 1–13, 2017.

[6] Z. Talukder and M. A. Islam, “Computationally efficient auto-weighted
aggregation for heterogeneous federated learning,” in 2022 IEEE Inter-
national Conference on Edge Computing and Communications (EDGE).
IEEE, 2022, pp. 12–22.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[8] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017.

[9] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[10] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[11] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine Learning and Systems, vol. 2, pp. 429–450, 2020.

[12] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečnỳ,
S. Kumar, and H. B. McMahan, “Adaptive federated optimization,” arXiv
preprint arXiv:2003.00295, 2020.

[13] W. Zhang, X. Wang, P. Zhou, W. Wu, and X. Zhang, “Client selection for
federated learning with non-iid data in mobile edge computing,” IEEE
Access, vol. 9, pp. 24 462–24 474, 2021.

[14] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022.

[15] D. Wu, R. Ullah, P. Harvey, P. Kilpatrick, I. Spence, and B. Varghese,
“Fedadapt: Adaptive offloading for iot devices in federated learning,”
IEEE Internet of Things Journal, 2022.

[16] B. Cox, L. Y. Chen, and J. Decouchant, “Aergia: leveraging heterogene-
ity in federated learning systems,” in Proceedings of the 23rd conference
on 23rd ACM/IFIP International Middleware Conference, 2022.

220

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on October 16,2023 at 00:30:02 UTC from IEEE Xplore. Restrictions apply.

