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Abstract—Federated Learning (FL) enables collaborative model
training across distributed clients, but the global model’s perfor-
mance often degrades due to variable data quality and reliability
at the local level. Previous approaches mitigate this by restricting
or excluding contributions from certain clients, leading to wasted
computation and communication resources for those disregarded.
In this paper, we introduce FedSRC: Federated Learning with Self-
Regulating Clients, a novel framework that optimizes resource
use while safeguarding client anonymity. With FedSRC, clients
autonomously assess their local training’s benefit to the global
model using a lightweight checkpoint based on local test loss and
a Refined Heterogeneity Index (RHI), deciding their participation
in each FL round accordingly. Extensive evaluations across four
datasets demonstrate that FedSRC achieves up to 30% savings
in communication costs and 55% in computation costs, all while
maintaining privacy and enhancing efficiency.

Index Terms—Federated Learning, Self-Regulation, Data Qual-
ity, Client Selection, Privacy, Resource Efficiency, Heterogeneity

I. INTRODUCTION

Federated Learning (FL) has emerged as a transforma-
tive paradigm in distributed machine learning, enabling a
multitude of clients—such as smartphones, wearables, and
IoT devices—to collaboratively train a shared model without
transferring their sensitive data to a central server [1]. Intro-
duced with the Federated Averaging (FedAVG) algorithm, FL
facilitates privacy-preserving training by allowing clients to
compute local updates on their private datasets and share only
model parameters with a central server, which aggregates these
updates into a global model. This approach has gained traction
in real-world applications, powering features like predictive
text in Google’s Gboard [2] and voice recognition in Apple’s
Siri [3]. By harnessing diverse, large-scale data from millions
of devices, FL offers scalability and privacy advantages over
traditional centralized training, making it a cornerstone of
modern privacy-conscious Al

Motivation. Despite its promise, FL's decentralized architec-
ture introduces significant challenges, particularly related to the
quality and reliability of client-generated data. In FL, clients
operate in silos, collecting data from varied sources—such as
sensors, cameras, or user inputs—using hardware of differing
capabilities. For instance, mobile and wearable devices, ideal
for FL due to their privacy-sensitive nature, often feature
sensors ranging from low-cost components in budget models
to advanced systems in premium devices [4], [5]. A recent
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Fig. 1: FedSRC’s architecture employs a client-side check-
point integrating test loss on the global model (GM) with a
Refined Heterogeneity Index (RHI). Clients with low-quality
data (high test loss) abstain, reducing local computation and
communication costs, while RHI ensures fair participation for
heterogeneous but valid data.

study by Facebook revealed thousands of unique hardware
configurations among its app users [6], underscoring this
diversity. Over time, hardware evolution has improved data
quality, with newer sensors offering higher resolution and
accuracy [7], [8]. However, this progress is uneven, and older
or malfunctioning devices can produce noisy, incomplete,
or erroneous data [9]. Worse, malicious actors can exploit
FL’s distributed nature, corrupting data to poison the global
model [10], as seen in adversarial attacks targeting crowd-
sourced systems.

These data quality issues are exacerbated by statistical
heterogeneity, often termed non-IID (non-independent and
identically distributed) data, where client datasets differ in
distribution, class balance, or feature representation [11]. For
example, one client’s wearable might track fitness data skewed
toward running, while another’s captures sedentary behavior,
leading to divergent local models. FedAVG, the foundational
FL algorithm, mitigates this by weighting client updates by
dataset size [1], but it assumes uniform data quality—an
assumption frequently violated in practice. Poor-quality data
slows convergence, introduces model drift during aggregation,
and degrades global performance, posing a critical barrier
to FL’s widespread adoption in real-world, heterogeneous
environments.

Limitations of existing approaches. Researchers have
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proposed several strategies to address FL’s data quality and het-
erogeneity challenges, yet each falls short in critical ways. One
prominent approach adjusts aggregation weights at the server,
reducing the influence of clients with unreliable data [12]-[15].
Techniques like SCAFFOLD [13] correct for client drift, while
Byzantine-robust methods [14] filter outliers from malicious or
faulty updates. Although effective in improving model accuracy,
these methods require all clients to perform local training
and upload updates, regardless of their eventual contribution.
For resource-constrained devices—common in FL—this incurs
significant computational overhead (e.g., training neural net-
works on limited CPU/GPU) and communication costs (e.g.,
uploading over bandwidth-constrained networks). Clients with
poor data, whose updates are down-weighted or discarded,
essentially waste these resources, undermining FL’s efficiency.

An alternative strategy, active client selection, seeks to
preempt this waste by profiling clients and selecting only
those with favorable updates [16], [17]. By analyzing update
quality or historical performance, the server cherry-picks par-
ticipants, reducing unnecessary training. However, this requires
tagging updates with client identifiers, enabling longitudinal
tracking that compromises anonymity—a cornerstone of FL’s
privacy guarantee. Such profiling heightens vulnerability to
model-inversion attacks, where adversaries reconstruct private
data from gradients [18], as demonstrated in recent security
analyses. Moreover, traditional data preprocessing—standard in
centralized ML to handle quality issues—is impractical in FL.
Clients lack visibility into the global data distribution, risking
over-correction (e.g., discarding valid outliers when bad data
dominates locally), and their preprocessing capabilities vary
widely, from sophisticated smartphones to basic IoT nodes.

Our contribution. To overcome these limitations, we
introduce FedSRC (Federated Learning with Self-Regulating
Clients), a groundbreaking framework that shifts the burden
of quality control to clients themselves, preserving both
efficiency and privacy. In FedSRC, clients autonomously decide
their participation using a lightweight checkpoint mechanism,
illustrated in Figure 1. This checkpoint evaluates local test
loss on the global model—reflecting data quality—and adjusts
it with a Refined Heterogeneity Index (RHI) to account for
non-IID effects. Clients with high test loss, indicating poor-
quality data, abstain from training and uploading, achieving up
to 30% communication and 55% computation savings across
four datasets. Unlike server-side weighting, FedSRC avoids
wasteful resource use; unlike active selection, it requires no
client profiling, maintaining anonymity by adhering to standard
FL protocols.

Implementing client-side regulation poses two key challenges.
First, clients have only local data, lacking the global context
to assess quality statistically. Second, the checkpoint must
be computationally lightweight for edge devices. We address
these with a novel test loss-based policy: clients test the
global model locally, exiting if loss exceeds a personalized
RHI-adjusted threshold. Our empirical insight—that poor-
quality data consistently yields high test loss—drives this
design, while RHI ensures heterogeneous but valid data

isn’t penalized. FedSRC integrates seamlessly with server-side
defenses against poisoning [10], enhancing robustness without
sacrificing privacy.

To our knowledge, FedSRC is the first FL approach empow-
ering clients with strategic decision-making. We provide the
first theoretical analysis of FL convergence under data quality
constraints, proving that selective participation accelerates
convergence by filtering detrimental updates. Extensive evalua-
tions on MNIST, CIFAR10, FEMNIST, and SHAKESPEARE
datasets confirm FedSRC's efficacy, demonstrating significant
resource savings and performance gains over baselines like
FedAVG and robust aggregation methods. By rethinking FL’s
client-server dynamic, FedSRC paves the way for scalable,
privacy-preserving learning in real-world, heterogeneous set-
tings. The source code and supplementary theoretical proofs
can be accessed at FedSRC [19].

II. PRELIMINARIES
A. Scope and Threat Model

This work targets data quality challenges in Federated
Learning (FL), focusing on two primary sources of poor-
quality data at the client level: hardware-related issues (e.g.,
malfunctions or low-quality sensors) and adversarial tampering
with client sensors or devices. Our threat model assumes an
attacker can degrade data quality by manipulating a client’s
sensor or hardware, but the client’s device executing local
FL training remains uncompromised. This assumption aligns
with FedSRC’s client-centric design, which relies on clients
adhering to the protocol. However, we note that this can be
relaxed without loss of generality by pairing FedSRC with
server-side defenses against malicious clients [20], [21], though
such clients may not self-regulate participation as intended.
Our focus excludes Byzantine adversaries controlling client
devices, prioritizing a client-level solution for data quality over
broader trust assumptions.

B. Federated Learning

Problem formulation. In an FL system, K clients, each
holding a local dataset Dy, collaborate to minimize a global
loss function:

Dy |
K )
Zk:l |Dk|

where Fj(w) = \Dfluzfem f(w, &) is the local loss for
client k, f(w,&) is the loss for a data sample £ under model
parameters w, and pj weights each client by dataset size. The
goal is to optimize F'(w) across all clients’ data without cen-
tralizing it, preserving privacy. Traditional FL assumes uniform
client contributions, but poor-quality or unreliable data—due
to hardware faults, sensor noise, or attacks—introduces noise
and bias, skewing updates and hindering convergence.
Solution. The Federated Averaging (FedAVG) algorithm [1]
addresses this optimization efficiently through iterative rounds.
In round ¢, a fraction M of clients (m = M - K) is
randomly selected as S(*). Each selected client performs 7

K
F(w) =Y peFr(w), p= o))
k=1
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local Stochastic Gradient Descent (SGD) iterations on Dy and
sends its updated model to the server, which aggregates them
into a new global model. The update for client & is:

o~ 060, i+ 1) mod 7 40

(t+1) _
Wy, BRI DY (wl(t) —mgl(wl(t)7 l(t))) =@t o/w
1€5(®
2
where w,(f) is the local model, 7n; is the learning rate,

and gk(w,(cw; ,(:)) = %Zfeg(ﬂt) Vf(w,(;),{) is the stochastic

gradient over a mini-batch & ,f) of size b, sampled from Dj.
The server updates the global model only after 7 iterations,
averaging the local updates.

While FedAVG scales effectively, it struggles with poor-
quality data. Noisy or corrupted Dj, yields skewed gradients,
degrading the global model and slowing convergence, especially
under non-IID conditions where data distributions vary widely
across clients. This motivates a need for selective participation
to mitigate the impact of unreliable updates.

C. Improving FL with Data Quality Issues

Biased aggregation. Equal treatment of clients in FedAVG
exacerbates performance degradation when data quality
varies [15], [22]. Unlike centralized ML, where preprocessing
can mitigate quality issues, FL’s local training amplifies the
effect of bad data on model updates, harming aggregation.
Biased aggregation methods [12], [13], [15] counter this
by down-weighting or discarding updates from unreliable
clients, improving global performance. However, this raises
fairness concerns: clients with poor data, assigned low weights,
contribute minimally yet still incur training costs, while FL aims
for collaborative benefit. We argue that excluding such clients
is justified—poor data already limits their local performance,
and including them risks degrading the global model for all.

This differs from inclusive biased aggregation [16], [23],
which favors poorly performing clients to balance non-IID
disparities, assuming distribution differences rather than quality
defects. Our focus is on quality-driven exclusion, prioritizing
overall model efficacy over universal inclusion.

Self-regulating clients. Centralized biased aggregation
wastes resources by requiring all clients to train and upload,
even those later discarded. We propose biased aggregation
via client selection, where only clients with high-quality data
participate. Server-side selection, however, requires profiling,
breaching anonymity. Instead, FedSRC empowers clients to
self-regulate, profiling their own data quality and opting out if
detrimental, preserving privacy and efficiency.

Challenges. Self-regulation faces three hurdles: (1) clients
access only their own data, limiting quality assessment; (2) they
lack visibility into other clients’ updates, unlike the server; and
(3) the strategy must be lightweight for resource-constrained
devices. In the next section, we develop a policy to overcome
these, leveraging local test loss and a Refined Heterogeneity
Index (RHI) for effective, efficient client selection.

III. OUR SOLUTION
A. FedSRC: FL with Self-Regulating Clients

Client classification. To implement a client selection strategy,
we first need to define who should be considered as a “bad
client” and discarded from model aggregation. Since FL clients’
data is private, we cannot directly assess clients’ data quality.
Hence, we classify bad clients based on the impact of their
inclusion in the global model as follows:

Definition III.1 (e-Bad Client). An FL client is e-bad if its
inclusion in the unbiased global aggregation increases the
converged global objective loss by more than e.

The parameter € in our definition serves two purposes. First,
it allows us to set the degree of negative impact that constitutes
a bad client. Second, it can absorb the variation of global
objective loss (for good client participation) due to non-IID
data distribution and the sequence of client participation in
the training rounds. Our definition, however, can only be an
approximate definition of bad clients since the impact of bad
data (from bad clients) and non-IID data (from good clients)
on the global loss is not always distinguishable. Nevertheless,
our definition serves to develop a client selection strategy for
improving the global model performance, albeit there is a
possibility (tunable through €) of treating some good clients
with non-IID data as bad clients.

Client selection strategy. The client classification in Defi-
nition I11.1 requires N + 1 complete! FL training, rendering it
impractical due to its huge computation and communication
overheads. Hence, we need to develop a lightweight approach
for identifying good and bad clients at the client level that can
serve as a proxy for Defintion IIL.1.

We devise FedSRC’s client selection strategy based on our
empirical observation that clients with bad quality data suffer
from worse local test performance when vetted against the
global model (GM). More specifically, we find that the bad
clients tend to have a higher test loss on the shared global model
across training rounds, even when they are included in the
model aggregation. To demonstrate this, we run experiments on
several data sets with 30% of clients suffering from noisy data
in Fig. 2. The results reveal two distinct distributions of good
and bad clients, with some degree of overlap between them.
Notably, we observe that this distribution pattern is consistent
for both training and test losses when using the GM, suggesting
that the threshold calculated based on training losses can be
effectively transferred to test losses. Further analysis into the
reasons for the overlap between good and bad clients indicates
that clients with higher data heterogeneity, despite having noisy
data, may outperform good clients with lower heterogeneity.
To further investigate this phenomenon, we utilize the Refined
Heterogeneity Index (RHI) to quantify data heterogeneity and
generate bad clients with varying RHI levels, subsequently
evaluating their test losses. As shown in Fig. 3, clients with
higher heterogeneity can have lower test losses with the GM

Global model convergence after many rounds of training.
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Fig. 2: Clients’ training losses and test losses on the global model (GM) of one training round in the presence of bad clients
show similar distribution and a test-loss-based cutoff can separate the good and bad clients reasonably well.

compared to good clients with lower heterogeneity. Thus adding
RHI to fine-tune the threshold for individual clients make our
design more robust against data heterogeneity.

A test loss-based approach satisfies our requirements for
client-side regulation since it can be a reasonably accurate
proxy for Definition III.1. Consequently, we set our client
selection strategy as follows: during FL training, we select the
clients with test loss lower than a given threshold.

Threshold-based participation. While we would like
the clients to implement our selection strategy and set the
participation threshold themselves, they do not have access to
the training losses of other clients.

Hence, in FedSRC, we engage the central server to anony-
mously collect the training losses of participating clients’ of a
particular FL round and determine the participation threshold
for the next round. Thus in our setup, participating clients send
their training losses along with the trained model to the central
server but do not share their RHI value. Here, we consider
that the clients send their model updates and training losses
anonymously using an anonymous communication protocol
such as Secure Multi-Party Computation (SMPC) [24], i.e., the
server can neither track which updates/losses are supplied by
which client nor pair training losses with their corresponding
model updates. Note that such anonymous participation cannot
be implemented in central serve-based active client selection.

Server-side threshold computation: In FedSRC, the server
computes a participation threshold for round ¢ using training
loss statistics from clients active in round ¢ — 1. This threshold,
denoted ¢®), guides clients in self-regulating their involvement,
optimizing resource use while filtering poor-quality contribu-
tions. Let S~V be the set of participating clients in round
t — 1, each providing a local training loss Tr_loss](ct_l). The
server calculates ¢t in three steps:

First, the median training loss establishes a baseline:

(t)

N median({Tr_loss,(ffl) Freest-1)s
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(a) CIFAR10 dataset (b) FEMNIST dataset.

Fig. 3: Bad clients with higher RHI outperform good clients
with lower RHI using the global model (GM).

where median(-) selects the middle value of the ordered loss
set, offering a robust central tendency resistant to outliers.
Next, the loss variability quantifies the spread of these losses:

1 —
oW = [ > (Trdoss{ ™V —g{l,)”,
|S |k65’(t*1)

where |S(~1)| is the number of clients in S*~1), and ¢(*) is the
standard deviation, reflecting the diversity in client performance
from round ¢ — 1.

Finally, an adaptive adjustment combines these to set the
threshold:

¢(t) _ () +aa(t)’

— Ybase

where « € [0, 00) (e.g., 1.5) is a scaling factor that dynamically
adjusts the threshold ¢(*) based on loss variability. A larger o in-
creases ¢*), loosening participation criteria and allowing more
clients—including those with potentially poor-quality data—to
join round ¢, whereas a smaller « reduces ¢(*), tightening
criteria and restricting participation, which may exclude even
high-quality clients. To balance this, clients indirectly influence
participation by adapting «: if the participation rate falls below
a predefined threshold (e.g., 50% of K), «v increases to include
more clients; conversely, if excessive bad clients participate, a
decreases to enhance selectivity. The server broadcasts ¢(*) to
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all clients, who evaluate their local test loss against it to decide
participation, optimizing the inclusion of reliable contributors.

Calculating RHI. Each client computes a Refined Hetero-
geneity Index (RHI) to measure both the number of classes
and the distribution of samples across them. The original
Heterogeneity Index (HI) [25] is defined as

Cr — 1
Cmax - ]-’
where ¢y, is the number of classes held by client k, and Ciax
is the total number of classes in the dataset. To refine this, we
incorporate the entropy of the local class distribution, computed
as

HI, =1-

Ck
Entropy;, = — Z d;logd;
i=1
where d; is the fraction of data points in class ¢. The normalized

entropy is then
NE, = Entropy,,
log ¢y,
which reaches its maximum value of 1 when the data is
uniformly distributed. Finally, the Refined Heterogeneity Index

is computed as
RHI; = k- Hl + (1 — k)(1 — NEg),

where k € [0, 1] balances the contribution of class count and
class distribution. Clients use their RHI to adjust participation
thresholds during training.

Client-side personalization: In FedSRC, each client k&
customizes its participation threshold for round ¢, denoted
<I>§:), based on the server-provided threshold ¢(*) and its local
data characteristics. This personalization enables clients to self-
regulate efficiently, balancing data quality and diversity. The
threshold is defined as:

" = ¢® x (1 - B-RHI),

where RHI}, is the Refined Heterogeneity Index of client k,
and 5 € [0,0.9] (e.g., 0.3) is a tuning parameter controlling
RHI’s impact. The RHI, a value between O and 1, reflects
the client’s data diversity (e.g., based on label distribution). A
high RHI}, reduces <I>§:) , lowering the bar for participation and
accommodating diverse clients despite potentially higher test
losses, while a low RHI;, keeps the threshold closer to ¢®).

To decide participation, client k evaluates the global model
w® on its local dataset, computing the test loss:

1
Test_loss,(f) = W E f(w(t)7§)~
£€Dy,

If Test_lossg’) < <I>,(:), the client proceeds with local training
and submits its update to the server, contributing to the global
model. Otherwise, it abstains, conserving computation and
communication resources when its data is unlikely to benefit the
model. The server imposes a deadline for responses, ensuring
the round progresses with participating clients, and collects
their training losses {Lgt), Lgt), NN Lg,?} (where m < K is

Algorithm 1 FedSRC

: Server Side:
. Initialize (w©®, a, B)
: for eachround t =0to 7T — 1 do
if t = 0 then
SO K
else
Select subset S® from K clients at random
end if
Send w®, ¢ to S®
10:  for each client k € S® do
w1« ClientUpdate(w(®))
12: end for
13:  Update w*+1), compute med(Tr_loss)®), o(*)
14: end for
15: Client Side:
16: ClientUpdate (w(®)
17: Client computes Test_loss,(:) with GM
18: Client computes o using RHI
19: if Test_loss,(f) < <I>k,t) then
20:  for each local epoch e from 1 to £ do

AR O O o

—_
—

21: Update w,(fﬂ , compute L,(p
22:  end for
23: end if

24: return w,(fﬂ), LS)

the number of participants) to inform the threshold for round
t+ 1.

Overhead of FedSRC’s implementation: The implementa-
tion of FedSRC introduces minimal computational overhead
for clients. This is primarily due to the addition of a single
test on a subset of the client’s training data. However, the
computational cost of this test is negligible when compared to
the substantial training cost savings achieved. Additionally, the
initial minibatch error, recorded before modifying the global
weights, can be leveraged to estimate the client’s test loss using
a randomly sampled minibatch from the training data. For
clients with fixed data distributions, the Refined Heterogeneity
Index (RHI) only needs to be computed once. As a result,
clients can make efficient participation decisions in any FL
training round with minimal computational impact.

Client re-inclusion in FedSRC: To ensure that good clients
with highly non-IID data (e.g., those exhibiting skewness
in feature space) are not permanently excluded, FedSRC
incorporates a re-inclusion mechanism. This strategy allows
any excluded client to participate periodically, such as 10% of
the time, or automatically re-includes a client after a predefined
number of exclusions. This ensures that rare or unique data
distributions are not overlooked during training, contributing
to a more robust and inclusive federated learning process.

B. Theoretical Analysis

Here, we prove the convergence of FedSRC and discuss how
our client selection policy affects the convergence. To facilitate
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our analysis, We make the following assumptions:

Assumption IIL.2. Fi,..
and w,

., F}, are all L-smooth, i.e., for all v

Fi(v) < Fi(w) + (0 — w) "V Fi(w) + ¢ o w]3.

Assumption IIL3. Fi, ..
for all v and w,

Fi(v) 2 Fi(w) + (v = w) "V E(w) + Sllo = w]}3.

., Fy, are all p-strongly convex, i.e.,

Assumption IIL.4. For the mini-batch & uniformly sampled
at random from Dy, of user k, the resulting stochastic gradient
is unbiased; that is, E[gi(wk,&k)] = VFg(wg). Also, the
variance of stochastic gradients is bounded: E||gx(wg, k) —
VFEo(wp)|?) <o?forallk=1,..., K.

Assumption IIL.5. The stochastic gradients’ expected squared
norms are uniformly bounded, i.e., E[||gx(ws, &) ||?] < G2 for
k=1,...,K.

Denote by B the set of e-bad clients for a fixed € > 0, and

let G be the set of good clients (i.e., those that are not e-bad.

By Definition III.1, these sets are fixed.

Since our assumption is that there are bad clients whose
updates adversely affect the global model, our convergence
analysis takes this into account by separating the good and bad
clients in all terms defined below. We utilize similar ideas to
[16] by defining a local-global objective gap and a skewness
of biased selection of clients who send their model update
to the central server. However, in contrast to prior work, our
definitions are in terms of the good (or potentially bad) clients,
which allows us to understand the effect of our client selection
strategy in the context of our problem setup.

We define global loss for two client sets: Fy(w) =
> keg PrFi(w) for the good clients in G, and similarly
define Fj, for the bad clients in 5. The optimal global
losses for good and bad clients are F,; = min,, Fy(w) and
Fy = min,, F,(w). Additionally, we define the global model
optimum w* = arg min,, F'(w), and the client-level optima
wj, = argmin,, Fj(w) for each client k.

Definition IIL.6 (Local-Global Objective Gap). We define the
local-global objective gap for good clients as follows:

Dy =Fy =Y pFy =Y pr(Fu(w®) = F(wf)) > 0.
keg keg
For highly non-IID data, Iy is non-zero, and larger Iy
implies higher data heterogeneity. I'y = 0 implies consistent
optimum models among the clients and the central server.

Definition IIL.7 (Selection Skewness). Let w be the current
weights of the global model, and 7 be any client selection
strategy. We let S(m,w) denote the selected clients using
selection strategy 7 and define the skewness of the client
selection strategy 7 for good and bad clients via

Es(rw) [%k g (Fr(w') = F{)]
eS(mw)N
pg(S(mw),u/) = : s
Fy(w') — ZkaI;k

keg

B[}, B ()~ )]
eS(mw)N

pu(S(m,w),w'") =

Fy(w') — ZPkFI:
keg
where p is the number of selected good clients, g is the
number of selected bad clients, and m = p + ¢. Above,

the current global model weights w influences the selection
strategy 7, while w’ is the global model weight at which
the selection skewness is evaluated. Eg(r,u) [-] represents the
expectation over the randomness from the selection strategy
in determining S(m, w).

Note that the denominator of both p, and p; are the same
and represent the current gap between the local and global
models for good clients only. This is because we do not
wish to select bad clients, and their local-global objective gap
should not influence our convergence analysis. The following
terms are useful for providing a concrete error bound in
the main theorem below. p; = min py(S(m,w),w’) and

w,w

Pg = mﬁxpg(S(W, w), w*).
We define pp, and p;, similarly.

Theorem II1.8. Under the Assumptions stated above, for a
learning rate n, = m with v = L and for client selection
strategy m that selects the same number of good and bad clients
(p and q, respectively) after time T, the error of federated

learning with self-regulating clients satisfies, for every t > T,

1 [4L(327°G? + o
E[F(@®)] - F* < { (327 2_+a /m) n
(t+7) 3u2pg
Vanishing Term
8Ly py  L(y + D(flo® — w*lz)}
12 Py 2
Vanishing Term
LS (v tan )
3 mpg

Bias Term

3)

To the best of our knowledge, Theorem III.8 provides the
first theoretical convergence bound for Federated Averaging
in the presence of adversarial or low-quality clients. The
complete proof is available in the supplementary material at
FedSRC [19].

Takeaway 1: Effect of the client selection strategy. First,
for an unbiased client selection strategy (clients participate in
the model update uniformly at random), both good and bad
clients will provide a model update. As the model’s training
progresses, the loss of the good clients decreases, whereas
the loss of the bad clients does not improve. This results in
a decreasing pg, but increasing pp, both of which negatively
affect both the rate of convergence of the vanishing term and
the magnitude of the bias term in (3). A biased client selection
strategy that is able to discard clients with higher loss will
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ensure an increase in the number of good clients selected and
decrease in number of bad clients selected, which reduces the
value of p, and increases the value of p,, resulting in both
faster convergence and smaller bias.

Takeaway 2: Reducing p, and increasing p, for faster
convergence. Under our model for good and bad clients, if
our selection strategy prioritizes client updates for those with
small test loss value F}, the number of bad clients selected in
S(m,w) will be smaller, which results in larger p, but smaller
py. Consequently, the first two terms in the vanishing term of
Theorem III.8 will be smaller, leading to faster convergence
compared to an unbiased selection strategy.

Takeaway 3: Bias term. Similarly, a client selection strategy
that prioritizes lower-loss clients will reduce the bias term
as p increases. Indeed, p, should be larger than p, for a
given selection strategy, so decreasing ¢, the number of bad
clients selected, decreases the numerator significantly, even as
p increases. Likewise, as p increases based on the selection
strategy, the denominator increases as well, thereby decreasing
the bias term.

IV. EVALUATION
A. Settings

Dataset and model description. We utilize four prominent
datasets: MNIST [26], CIFAR10 [27], FEMNIST [28], and
SHAKESPEARE [28], which are widely referenced in the
literature [1], [29], [30]. For the MNIST and CIFAR1O
datasets, we create non-IID settings by assigning each client
a dominant class comprising 80% of their data, with the
remaining 20% distributed among the other classes. In an
extreme scenario, each client receives data from only two
classes. The FEMNIST and SHAKESPEARE datasets are
naturally non-IID. For handwriting classification in MNIST
and FEMNIST, we use a multilayer perceptron (MLP). For
CIFAR1O image classification, we employ a Convolutional
Neural Network (CNN), and for the next character prediction
in SHAKESPEARE, we utilize a Recurrent Neural Network
(RNN). The MNIST and CIFAR10 models are evaluated
on their respective test datasets, while for FEMNIST and
SHAKESPEARE, each client’s test data is used to evaluate
the global performance. Dataset is tabulated in I.

Evaluation scenarios. We consider three scenarios reflecting
potential data corruption due to sensor quality, malfunction,
and aging. Label shuffling: It can be referred to as random
sensor malfunction, leading to assigning random labels to data.
Label flipping: It refers to mislabeling data, leading to the
same mislabel across all the client data. Noisy data: It results
from hardware quality in the feature space. To simulate this,
we added Gaussian noise to the feature and then clipped the
value within the desired feature space level. As the default
configuration for our evaluation, we use a mix of 70% good
clients with 30% bad clients. The bad clients are equally divided
among the three cases.

Benchmark algorithms. To assess the performance of
FedSRC, we compare it with several benchmark algorithms.
FedAVG [1] is the standard federated averaging technique,

TABLE I: Dataset details.

Dataset Training | Test # Clients | Distribution
MNIST 60,000 10,000 | 300 IID/non-11D
CIFAR1O 50,000 10,000 | 300 IID/non-11D
FEMNIST 341,873 40,832 | 3,383 non-11D
SHAKESPEARE | 16,068 2,356 715 non-11D

assigning client weights based on dataset size. Median [14]
employs a Byzantine-robust aggregation rule, computing the
median of each parameter independently. Trimmed Mean
[14] is another Byzantine-robust aggregation approach, sorting
parameters and averaging the middle values after removing
extremes. FedASL [15] automatically assigns weights to clients
based on the median of their training losses, prioritizing clients
within a predefined ”good zone” around the median. Krum [31]
operates by calculating the Euclidean distance norms between
each client’s model weights and those of others, removing the
highest value for each client, and averaging the rest to select
the next global model.

Computing infrastructure. The experiments are conducted
using two tower servers, each equipped with two NVIDIA 3080
GPUs, 256 GB of memory, and 1024 cores. The models were
developed and trained using TensorFlow Keras, leveraging the
high computational power and parallel processing capabilities
of this setup.

B. Results

Comparison with benchmark algorithms. We assess the
efficacy of FedSRC by comparing it with established feder-
ated learning algorithms—Trimmed Mean, Krum, FedASL,
and FedAVG—across diverse datasets including FEMNIST,
CIFAR1O0, MNIST, and SHAKESPEARE. Experiments are
conducted under a standard scenario with 30% of clients
exhibiting corrupted data. In FedSRC, the threshold ¢(*) is
dynamically tuned using «, adjusted to maintain a 70%
participation rate (reflecting the proportion of good clients),
alongside a fixed 8 = 0.5 to optimize client selection based
on the Refined Heterogeneity Index (RHI). For comparison,
Trimmed Mean and Krum mitigate corruption by blocking
30% of clients, FedASL excludes clients beyond one standard
deviation (approximately 32% exclusion), and FedAVG, the
baseline, retains all clients, rendering it highly susceptible to
corrupted data influence.

Table II presents the test accuracy, while Table III details the
test loss of the global model on uncorrupted test data across all
algorithms and datasets. Figure 4 underscores that FedSRC con-
sistently surpasses the benchmarks, delivering superior global
model accuracy. These findings affirm FedSRC ’s effectiveness
in managing corrupted data, enhancing performance while
preserving client anonymity and optimizing resource utilization
through adaptive participation control.

Computation and communication savings. To quantify
the computational and communication savings achieved by
FedSRC, we conduct experiments across various proportions
of corrupted clients using different datasets. Clients need to
do a forward pass (inference loss) of the first batch only to
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Fig. 4: Comparison of global accuracy of FedSRC with benchmark algorithms.
TABLE II: Comparison of the accuracy of FedSRC with benchmark algorithms.

Algorithms MNIST IID | MNIST non-IID | MNIST Extreme | CIFARIO IID | CIFAR1O non-IID | CIFAR1O Extreme | FEMNIST | SHAKESPEARE
FedASL 0.973 0.971 0.942 0.556 0.556 0.488 0.746 0.511
FedAVG 0.971 0.969 0.936 0.548 0.552 0.491 0.749 0.499

Krum 0.969 0.963 0.891 0.534 0.411 0.339 0.742 0.357

Median 0.972 0.970 0.929 0.524 0.504 0.275 0.742 0.417

Trimmed Mean 0.974 0.974 0.957 0.533 0.529 0411 0.743 0.449

FedSRC 0.981 0.979 0.969 0.593 0.568 0.502 0.780 0.524
TABLE III: Comparison of the loss of FedSRC with benchmark algorithms.

Algorithms MNIST IID | MNIST non-IID | MNIST Extreme | CIFAR1O IID | CIFAR1O non-IID | CIFAR10 Extreme | FEMNIST | SHAKESPEARE
FedASL 0.117 0.121 0.287 1.313 1.328 1.494 1.064 1.655
FedAVG 0.174 0.138 0.396 1.362 1.384 1.543 1.080 1.699

Krum 0.098 0.116 0.342 1.330 1.815 2.183 0.996 2.315
Median 0.096 0.112 0.329 1.429 1.530 2.010 1.066 2.027
Trimmed Mean 0.116 0.115 0.229 1.395 1.530 1.775 1.071 1.895
FedSRC 0.064 0.072 0.119 1.172 1.233 1.495 0.731 1.607
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Fig. 5: Client-side savings of FedSRC.

decide on participation. This initial computational step, while
adding minor overhead, becomes increasingly negligible as the
dataset size grows, relative to the overall savings achieved. For
datasets with smaller average batch sizes, such as FEMNIST
(average of 5 batches), the proportional computational savings
are slightly lower compared to larger datasets like MNIST (15
batches) and CIFAR1O0 (13 batches).

Despite these variations, Fig. 5 demonstrates that FedSRC
achieves substantial computational savings, reducing local
computational costs by up to 55% when higher proportions of
clients are malicious.

In terms of communication savings, FedSRC enables clients

FedAVG Krum Median TM FedASL FedAVG Krum Median TM FedASL

(a) Accuracy (b) Loss

Fig. 6: Performance comparison of integrating FedSRC with
existing algorithms for FEMNIST.

to abstain from participation. As Fig. 5 highlights, FedSRC
achieves communication savings of up to 30% when 60% of
clients are bad. Unlike computation savings, these communica-
tion savings are independent of dataset size, as they are solely
determined by the proportion of abstaining clients. Together,
these findings underscore FedSRC’s efficiency in reducing
resource consumption while maintaining robust federated
learning performance.

Integration with existing algorithms. We demonstrate the
effectiveness of integrating FedSRC with other algorithms
by implementing it at the client level while maintaining
aggregation protocols such as FedAVG, FedASL, Trimmed

133

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on November 05,2025 at 15:50:04 UTC from IEEE Xplore. Restrictions apply.



80 2.0 >
:; > --Fedasl ==TM /
S == =~Median Fedavg

- F \ 01.5{ ~~Krum <-FedSRC

g 70 : g //,,/

5 | —Fedasl --TM - i

Y ~~Median Fedavg 1.0 _

< 60| - -Krum <-FedSRC / —_—

0 10 20 30 40 50 60 70
Bad Client (%)

0 10 20 30 40 50 60 70
Bad Client (%)

(a) Accuracy with different per-
centages of bad clients.

(b) Loss with different percent-
ages of bad clients.

Fig. 7: FedSRC with different percentages of bad clients.

- 1.20
<78

s 1.05
g n
c76 80.90
s -

v

$7a 0.75

0.60 g 15 3 45 .6 .75 .0

0 .15 .3 .45 .6 .75 .9
B Values B Values
(a) Accuracy (b) Loss
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Mean, Krum, and Median on the server side.

As shown in Fig. 6, our integration approach enhances
the performance of these pre-existing algorithms (about 6%
increase in accuracy) and reduces the error loss (about 33%
decrease in loss) in the presence of unreliable clients, all
the while also reducing computation and communication
costs. These observations support our assertion that FedSRC
seamlessly complements and improves the performance of
benchmark algorithms controlled from the server side.

Impact of different percentages of bad clients. To assess
our algorithm against varying levels of corrupted data, we
use the FEMNIST dataset with different percentages of bad
clients. Fig. 7 shows the effect of increasing the percentage of
bad clients on global model performance. As the proportion
of bad clients rises, conventional algorithms such as FedAVG,
Trimmed Mean, and Krum experience significant declines
in accuracy due to the adverse impact of corrupted data. In
contrast, FedSRC demonstrates robust performance, maintain-
ing higher accuracy levels compared to the benchmarks. This
robustness can be attributed to FedSRC’s adaptive threshold
mechanism, which effectively identifies and excludes the
influence of bad clients without compromising the contributions
of good clients.

C. Ablation Study

Impact of the value of . To evaluate 3’s impact, we
experiment on the FEMNIST dataset with 30% bad clients
(e.g., with corrupted labels), testing 5 values from 0 to 0.9.
Figure 8 shows accuracy, and test loss. At 5 = 0, RHI is
ignored, overly restricting participation and excluding good but
heterogeneous clients, leading to lower accuracy (76%) and
higher loss (0.75). Conversely, at 5 = 0.9, excessive weight
on RHI reduces @;ﬁ too much, allowing more bad clients to
participate, which degrades accuracy to 74% and increases loss
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Fig. 9: Effect of client re-inclusion on the performance of
FedSRC for the FEMNIST dataset.
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Fig. 10: Training loss and performance under extreme data
conditions.

to 1.05. The optimal balance occurs at 5 = 0.45, achieving
the highest accuracy (78%) and lowest loss (0.65), excluding
approximately 37% of clients—close to the actual 30% bad
clients. This highlights the need for careful 3 tuning to balance
heterogeneity and quality.

Impact of client re-inclusion. To see how client re-inclusion
can affect the performance of FedSRC, we conduct our
experiment with FEMNIST dataset with varying probability of
not following threshold protocol as in Fig. 9. The definition
of re-inclusion here is not profiling and includes a client, it
means sometimes even if the client is outside the threshold
value, it will still participate with a certain probability. As we
can see here, with added probability more and more clients
start to participate, so if we can choose a good £, and if we
choose more clients, effectively it starts to include bad clients,
and performance becomes bad. However, because of our policy
if an extreme non-IID client is discarded, because of this re-
inclusion policy, they still can participate and make the model
more robust. So choosing a reasonable probability can make
our design more generalized and robust.

Evolution of client loss during training in the presence
of rare and bad clients. To evaluate FedSRC’s robustness
under extreme non-IID conditions, we analyzed how clients’
training losses evolve during training. Fig. 10 illustrates the
FEMNIST dataset’s training loss distribution in the presence
of non-IID, extreme non-IID, and bad clients. Initially, clients
with bad and extreme non-IID data exhibit similar loss patterns.
However, as training progresses, the losses of bad clients
diverge significantly, creating a clear distinction from those with
extreme non-IID data. This distinction supports the use of a
reasonable threshold in FedSRC to maintain good performance.
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Additionally, Fig. 10 shows FedSRC’s performance on the
MNIST dataset with extreme non-IID clients, where each
client has data from only two classes. Even under such
conditions, FedSRC achieves results comparable to FedAVG,
demonstrating its stability and effectiveness without degrading
overall performance. These findings confirm FedSRC’s ability
to handle challenging non-IID scenarios while ensuring system
stability.

V. RELATED WORK

The performance of FL degrades in the presence of corrupted
clients [10]. To defend against corrupted clients, various
algorithms have been proposed in the literature for attaining
robust federated learning [32]-[34].

Statistics-based solutions. Among these techniques, notable
statistics-based approaches include Krum [31], which selects
a local model as the global model based on its similarity to
others. Bulyan [35] addresses its limitations by combining
Krum with a Trimmed Mean [14] variant. However, Bulyan’s
scalability and computation overhead are issues due to the need
to compute both Krum and Trimmed Mean in each training
round

Byzantine robust algorithms. Other Byzantine-robust al-
gorithms include Trimmed Mean [14], which individually
sorts and trims outliers from each model before averaging
the remaining parameters for the global model. Median [14]
adopts a similar approach, using the median of independent
model parameters as the global model. Another technique
employs Geometric Median (GM) [32], [36] to determine the
federated learning model parameter. However, these methods
suffer from computational intensity and lack suitability for
edge-based federated learning due to resource constraints.

Client selection. Client selection techniques utilize loss func-
tion evaluations to address non-IID (Independent and Identically
Distributed) challenges. The Active Federated Learning (AFL)
algorithm [17] employs a value function assessed at each client,
converting these valuations into selection probabilities. This
approach favors clients with higher loss values, simulating
a greater representation of minority data points. Similarly,
Power-of-Choice Selection Strategies [16] build on this idea,
prioritizing clients with higher losses for subsequent training
rounds. However, both methods require tagging client updates
with identifiers, which compromises client anonymity and
threatens the privacy principles inherent in federated learning.
Moreover, in scenarios where bad clients exhibit higher losses,
these algorithms can completely fail, leading to divergence.
Their design primarily targets non-IID issues but does not
adequately address data quality concerns.

Re-weighting. In [37], poisoned updates in collaborative
learning are detected using client-side cross-validation results
to adjust update weights during aggregation. [38] addresses
unreliable clients in Federated Learning by computing a utility
score using auxiliary validation data, reducing their negative
impact. In [15], reweighting models during aggregation based
on the distance of training loss from the median of all client
losses mitigates the impact of unreliable clients. These defenses

require online detection, potentially compromising privacy due
to access to auxiliary datasets.

Other data poisoning. In works such as [34], [39]-[42],
trusted client subsets are leveraged to counteract the impact
of malicious clients. In clustered Federated Learning, [34]
proposes dividing clients into benign and corrupted groups
based on cosine similarity between model parameters. Li et
al. [41] employs an encoder-decoder approach to identify
malicious updates. FLTrust [39] introduces maintaining a root
dataset and server model to collect a clean small training
dataset from clients. While these methods aim to enhance
federated learning’s robustness, the trustworthiness of trusted
clients and validation datasets is uncertain in the federated
setup. Additionally, communication and privacy constraints
challenge compliance with federated learning protocols.

In contrast, FedSRC can manage client-side data corruption
without reliance on validation datasets or identity disclosure. To
the best of our knowledge, FedSRC is the pioneering algorithm
to address data quality issues directly from the client side to
save local computation and communication costs.

V1. CONCLUDING REMARKS

This paper introduces a pioneering approach to address
data quality challenges in federated learning (FL) by empow-
ering clients to self-regulate their participation. Our method
significantly reduces communication and computation costs,
enhances the accuracy of the global model, and preserves client
anonymity—key advantages in resource-constrained, privacy-
sensitive environments. To the best of our knowledge, FedSRC
represents the first effort to implement client-side participation
control, shifting the burden of quality management from the
server to the clients. Moreover, we demonstrate that FedSRC
imposes negligible additional computational overhead on the
server, ensuring scalability without compromising efficiency.

Limitations. While FedSRC is effective under normal
conditions, it relies on client-side statistics to evaluate local
utility and thus may become ineffective if a large fraction of
clients (e.g., over 60%) are corrupted or malicious. Additionally,
although FedSRC reduces the communication overhead by
avoiding unnecessary model uploads, it does not eliminate the
cost of downloading the global model—clients still need to
receive the model to compute their local test loss. In contrast,
active client selection approaches can save both download and
upload costs, but often at the expense of client anonymity.
Furthermore, since FedSRC operates entirely at the client
side, it does not incorporate server-level mechanisms to detect
or mitigate model poisoning attacks from malicious clients.
However, it is worth noting that FedSRC does not introduce
any new vulnerabilities or attack surfaces beyond those already
present in standard FL systems.
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