
Resource Optimized Split Federated Learning: A
Reinforcement Learning and Optimization Approach

Maher Guizani‡, Latif U. Khan†, Waseem Ullah†, Mohammad A. Islam‡
[mahergzani@gmail.com, latif.khan2@gmail.com, mislam@uta.edu]

‡ University of Texas at Arlington, USA.
† Mohamed Bin Zayed University of Artificial Intelligence, United Arab Emirates.

Abstract—Federated learning (FL) offers many benefits, such
as better privacy preservation and less communication overhead
for scenarios with frequent data generation. In FL, local models
are trained on end-devices and then migrated to the network edge
or cloud for global aggregation. This aggregated model is shared
back with end-devices to further improve their local models.
This iterative process continues until convergence is achieved.
Although FL has many merits, it has many challenges. The
prominent one is computing resource constraints. End-devices
typically have fewer computing resources and are unable to learn
well local models. Therefore, split FL (SFL) was introduced to
address this problem. However, enabling SFL is also challeng-
ing due to wireless resource constraints and uncertainties. We
formulate a joint end-devices computing resources optimization,
task-offloading, and resource allocation problem for SFL at the
network edge. Our problem formulation has a mixed-integer
non-linear programming problem nature and hard to solve due
to the presence of both binary and continuous variables. We
propose a double deep Q-network (DDDQN) and optimization-
based solution. Finally, we validate the proposed method using
extensive simulation results.

Index Terms—Federated learning, split federated learning,
double deep Q-network.

I. INTRODUCTION

Recently federated learning (FL) has been extensively in-
vestigated to realize better privacy-aware machine learning
for various applications [1]. In wireless systems, FL is im-
portant mainly for two reasons. These reasons include better
privacy preservation and efficient communication learning for
scenarios with frequent data generation (e.g., autonomous cars
generate 40, 000 Giga octet of data every day). Therefore, it is
very challenging to send frequently generated data to the cloud
in such scenarios. FL is a suitable solution for such scenarios.
Although FL enables many benefits, it also has challenges. It
is challenging to train local FL models at end devices due to
computing resource constraints. Additionally, sharing learning
updates over a wireless channel is challenging and involves
many impairments. These impairments will degrade the quality
of the FL learning process. To address the challenge of the
computing resource constraint, split FL (SFL) was presented
in [2]. In SFL, a partial local model is learned at end-devices
and partial at the network edge. Few works considered SFL
[3]–[6]. The work in [3] evaluated the performance of SFL

and FL over wireless networks. Another work [4] proposed a
hybrid architecture of SFL and FL. They modeled a wireless
communication for their framework and performed significant
analysis using simulation results. The work in [5] proposed
a novel federated split learning architecture and presented
results. Otoum et al. [6] presented the use of federated learning,
split learning, and transfer learning for intelligent transporta-
tion system applications. Different from the works in [3]–[6],
we propose a novel dueling-based double deep Q-network for
efficient task-offloading and resource allocation in SFL over
wireless networks. Our contributions are as follows:

• A joint task-offloading and resource allocation problem
for SFL is formulated. Moreover, we consider the latency
constraint as a QoS metric for SFL.

• Due to the mixed-integer non-programming (MINLP)
nature of the formulated problem, we decompose the
main problem into sub-problems: (a) devices computing
resource optimization, and (b) joint task-offloading and
resource allocation problem. For devices computing re-
source allocation, we use convex optimization, whereas
for the joint task-offloading and resource allocation prob-
lem, we use a double deep Q-network (DDQN) due to its
combinatorial nature.

• Finally, extensive simulations are carried out for valida-
tion of the proposal.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a system of resource-constrained Internet of Things
(IoT) devices, as shown in Fig. 1. There is a set S of S
resource-constrained IoT devices. Every device has a local data
Bs,∀s ∈ S with each having Bs data points. These devices
learn are supposed to learn local models. Additionally, there
will be a set L of L edge servers. However, there are computing
resource (i.e., CPU-cycles/sec) limitations. Therefore, there
is a need for additional computing resources. To address
this challenge, the concept of split federated learning (SFL)
(i.e., as shown in Fig. 1) is presented in [2]. Although SFL
enables many benefits, there is a need for efficient allocation
of wireless and computing resources at end-devices and edge
servers. Additionally, the devices engaged in SFL needs to

1

3

Partial local model

Partial local model

5

Local weights
update

2
Partial local model

sharing

2
Partial local model

sharing

4
Gradients

sharing
4

Gradients
sharing

6

Complete local
model updates
transmission to

server

6

Complete local
model updates
transmission to

server

Cloud

Averaging of the
local models

7

Fig. 1: Split federated learning system model.

offload their tasks to the edge servers efficiently. First, we
discuss the wireless SFL model.

A. Wireless SFL Model

A set S ′
of S

′
resource constrained consumer electronic

devices want to participate in learning process of a global
model. Among S ′

of S
′
, the set S of S will participate in

the learning process due communication resources constraints.
Every device learns a partial local model due to comput-
ing resources constraints. Let the learning task is given by
Ts(cs, bs, ts)∀s ∈ S, where (cs and bs denote the computing
resources needed for learning a particular local model for a
single data point and total local data set points, respectively.
For a fixed local model architecture, the local latency in
computing a partial model is given by:

Ξlocal
s (℘) =

csbs
℘s

,∀s ∈ S, (1)

where ℘s denotes the computing resource assigned to device
s. From (1), it is clear that an increase in the local computing
resource will minimize the latency but at the cost of high local
energy consumption (i.e., energy is proportional to the square
of the operating frequency of a device).

ℓlocal
s (℘) = αscsbs℘

2
s,∀s ∈ S, (2)

where αs denotes the effective capacitance coefficient of de-
vice s. On the other hand, the local device computing resources
should follow the following limits.

℘min ≤ ℘s ≤ ℘max,∀s ∈ S, (3)

where ℘min and ℘max denote the minimum and maximum
limits, respectively. On the other hand, the summation of
computing resources of all devices should not exceed the
maximum limit, i.e, ℘MAX .

S∑
s=1

℘s ≤ ℘MAX . (4)

Next to computing the partial local model, it is shared with
the edge server where the remaining computation of the local
model takes place. At the network edge, there are two ways
to compute the partial remaining local model. One way is to
provide labels at the network edge and the other way is to
share back the data to end-devices for computing loss function
using labels. In this work, we assume the output labels are
available at the network edge. After the edge servers receive
a partial local model, further computation takes place at the
network edge. Next to computing at the edge, the gradients
will be shared back with the devices. On the other hand,
for communication between end-devices and edge servers,
we consider an orthogonal frequency division multiple access
(OFDMA). As the communication resources have constraints
in terms of availability, therefore, it is a good idea to reuse the
existing occupied resources by cellular users. For computing
the transmission latency, we can write as:

ℓtrans(κ,υ) =

 κ(s,l)υ(s,r)Os

Tr

(
log2

(
1 +

pshs,l∑
c∈C pchc,b+N2

o

))
 , (5)

where Os and Tr denote the learning data overhead of the
device s and bandwidth of the resource block r, respectively.∑

c∈C pchc,b is the inference on resource block r. N2
o is the

noise power. κ(s,l) and υ(s,r) are task offloading and resource
allocation variables, respectively. The task offloading variable
has a value κ(s,l) = 1 if device s offloads its task to edge server
l and κ(s,l) = 0, otherwise. Similarly, the variable υ(s,r) = 1
if the device s is allocated the resource block r and υ(s,r) = 0,
otherwise. Every edge server has a certain capacity to serve
end-devices by performing partial learning task computation
for them. Therefore, there is a need for a limit.

S∑
s=1

κs,l ≤ κmax
s ,∀l ∈ L, (6)

where κmax
s denotes the maximum limit in serving end-

devices. On the other hand, a single device should offload its
learning task to a single edge server.

L∑
l=1

κs,l ≤ 1,∀s ∈ S, (7)

Similar to task-offloading, there is a need for constraints on
resource allocation, i.e., a single resource block should be
allocated to a single device.

R∑
r=1

υs,r ≤ 1,∀s ∈ S. (8)

For transferring learning updates to the edge servers, there is
a need for wireless resource blocks. The number of resource
blocks needed for transferring of learning updates depends on
the learning data size, which in turn depends on the complexity
of end-device model architecture. We use a single resource
block for an end-device similar to the work in [7].

S∑
s=1

υs,r ≤ 1,∀r ∈ R. (9)

On the other hand, the transmission energy can be given by:

Ξtrans(κ,υ) =

 κ(s,l)υ(s,r)Os

Tr

(
log2

(
1 +

pshs,l∑
c∈C pchc,b+N2

o

))
 ps,

∀s ∈ S,
(10)

After local model is computed, the local model is shared
with the remote cloud via small cell base station. The number
of rounds between the end-devices and the edge servers can
be given by:

Ig(ε,θ) =
Γ log(1/ε)

1− θ
, (11)

where Γ is the local dataset dependent constant. The term θ
is the relative local accuracy. θ has a different interpretation
compared to the local accuracy. Lower values of θ are desirable
compared to higher values and vice versa. ε is the global
accuracy. It is evident from (11) that the global rounds depend
on θ, i.e., lower values of θ will generally result in more
global rounds and vice versa. Additionally, the latency due
to transmission of learning updates should not exceed the
maximum limit. κ(s,l)υ(s,r)Os

Tr

(
log2

(
1 +

pshs,l∑
c∈C pchc,b+N2

o

))
 ≤ ϕmax,

∀s ∈ ∫ , r ∈ R.

(12)

Next, we write our formulated problem.

B. Problem Formulation

For a problem formulation, first, we should define an ob-
jective function. Our objective function is the cost of training
SFL model. In our case, we consider both latency and energy
while writing the objective function. To do so, first, we write
energy consumption as in [1]:

Ξtotal(κ,υ,℘,θ) = (1 + θ)Ξtrans(κ,υ) + Ξlocal
s (℘), (13)

In (13), the notion of θ is to reflect the effect of the relative
local accuracy on energy cost. For higher values of θ, the cost
will be high and vice versa. Now, we write the total latency
as:

ℓtotal(κ,υ,℘,θ) = ℓtrans(κ,υ) + ℓlocal
s (℘) (14)

Similar to (13), one can rewrite (14) as:

ℓtotal(κ,υ,℘,θ) = (1 + θ)ℓtrans(κ,υ) + ℓlocal
s (℘) (15)

Next, we write the overall cost as:

C(κ,υ,℘,χ,θ) = βℓtotal + (1− β)Ξtotal, (16)

where β denotes the scaling constant and one can use it to
scale the proportion of energy and latency while computing the
cost for learning SFL model. Now, we write our formulated
problem whose goal is to minimize the overall cost of learning
the SFL model.

P−M : minimize
κ,υ,℘,θ

C(κ,υ,℘,θ) (17)

subject to:
(3), (4), (6)− (9), (12).

The formulated problem is a MINLP problem. It is difficult to
solve the formulated problem directly. Additionally, one can
not use conventional optimization schemes. Therefore, we will
use a decomposition-based scheme as explained in the next
section.

III. PROPOSED OPTIMIZATION AND MULTI-AGENT
REINFORCEMENT LEARNING SOLUTION

Our formulated problem is MINLP and has a challenging
nature to solve. Therefore, we propose a scheme based on
decomposition. Our approach is based on division of the
main problem into two sub-problems. These sub-problems are
devices computing resource allocation and joint task-offloading
as well as resource allocation.

A. Devices Computing Resource Allocation Problem

We write devices computing resource allocation problem as:

P−DR : minimize
℘

C(℘) (18)

subject to:
℘min ≤ ℘s ≤ ℘max,∀s ∈ S, (18a)
S∑

s=1

℘s ≤ ℘MAX . (18b)

Problem P-DR is the minimize the end-devices latency in
computing partial local models. Problem P-DR is a convex
optimization problem whose convexity can be proved by
checking the objective function and constraints. For fixed task-
offloading variable, resource allocation, edge servers comput-
ing resource allocation, the objective function depends only on
℘. To check the convexity, we first take the convexity by taking
the derivative twice with respect to ℘. For feasible values of ℘,
the objective function results in positive values. Based on this,
we can say that the objective function is convex. Additionally,
the constraints are linear inequality constraints. Therefore, the
problem P-DR is a convex optimization problem.

B. Joint Task-Offloading and Resource Allocation Problem

We write a joint task-offloading and resource allocation
problem as:

P−TR : minimize
κ,υ

C(κ,υ) (19)

subject to:
S∑

s=1

κs,l ≤ κmax
s ,∀l ∈ L, (19a)

L∑
l=1

κs,l ≤ 1,∀s ∈ S, (19b)

R∑
r=1

υs,r ≤ 1,∀s ∈ S, (19c)

S∑
s=1

υs,r ≤ 1,∀r ∈ R, (19d)

Ωs,r ≤ ϕmax,∀s ∈ ∫ , r ∈ R, (19e)
κs,l ∈ {0, 1}, υ ∈ {0, 1}, (19f)

Problem P-TR is combinatorial problem and can not be solved
using convex optimization schemes. To solve this, one can
use a relaxation and decomposition based scheme [8]. This
approach has an inherent limitation of approximation errors in
conversion from binary task-offloading and resource allocation
variables into continuous and then, continuous back to binary
variables. To overcome this limitation, another way is to use an
exhaustive search scheme [9]. However, the exhaustive search
scheme suffers from high computing complexity. Based on

aforementioned discussion, we propose a solution based on
DDQN.

For DDQN, first, we formulate our scenario as a stochastic
game. All users in the proposed system are selfish and want
to maximize their long-term rewards by choosing edge servers
and resource blocks. For any time t, the reward of a particular
device/user depends on the environment current state as well
as other devices actions. For the stochastic game formulation,
our optimization problem can be give by ⟨S,G,A,P,R⟩ [10].

• S is the set of S devices.
• G is the set of all possible states.
• As denotes the action of device s. Moreover, the

vector of the joint action can be given by −→a =
(a1, a2, a3, ..., aS)T ∈ ×sAs

• P is the state transition probability.
• Qs is the reward function of the s device.

In our system, all users will choose an edge server and resource
block, therefore, the action space can be given by.

arls(t) = {lls(t), rrs(t)}. (20)

where lls(t) ∈ {0, 1}, lls(t) ∈ {l0s(t), l2s(t), ..., lL−1
s (t)} and

rrs(t) ∈ {0, 1}, rrs(t) ∈ {r0s(t), r1s(t), ..., rR−1
s (t)}. In our

system, the total number of states can be given by the product
of edge servers-based BSs and the number of resource blocks
LR. For a given time t, the action of other end-devices can be
given by A−1(t) = {arl1(t), ..., arls−1(t), a

r
ls+1(t), ..., a

r
ls(t)}.

Note here that the immediate reward Rs(t) = R(g,As,A−s)
of any device s depends on its current action As and other
devices actions A−s. On the other hand, to determine the stable
and mutually optimal strategies in stochastic games, one can
use the concept of Nash Equilibrium. The stochastic game is
said to achieve the Nash Equilibrium if the following holds
true.

Qs(t) = Q(g,A∗
s,A∗

−s) ≥ Qs(t) = Q(g,As,A∗
−s),

∀Ai ∈ A
(21)

Now, we use finite-state Markov decision process (MDP)
to model the stochastic game. The reward of the devices
depends on the current state and actions. Therefore, the process
follows the Markov property. The MDP can be given by
⟨S,G,A,P,Q⟩. Q in our system is equal to the 1

C . The optimal
policy π∗

i is obtained by maximizing the value-state function
Vi(s, πi, π−i) of each UE in each state:

Vi(g, πi, π−i) = Eτ∼(πi,π−i)

T−1∑
t=0

γtQi(gt, ai,t, a−i,t)

∣∣∣∣ g0 = g

 ,

(22)

where Eτ∼(πi,π−i) is the expectation taken over all possible
trajectories τ generated by the joint policies πi and π−i, where
π−i denotes the strategies of other agents. γ is the discount

SFL network

Qi(s,ai)

ai
*

Q*
i(s,ai;θ) -

Back

propagation

y

X

Qi(s,ai;θ-) Q*
i(s,ai;θ-)

Q*
i(s,ai;θ) argmax ai*

ai
*

ui ++

Replay memory

S ai
* ui S’

Mini

batches

S

1

3

Par tial local model

Par tial local model

5

Local weights update

2

Par tial local model sharing

2

Par tial local model sharing

4

Gradients sharing

4

Gradients sharing

6

Complete local model updates transmission

to server

6

Complete local model updates transmission

to server

Cloud

Averaging of the local models

7

1

3

Par tial local model

Par tial local model

5

Local weights update

2

Par tial local model sharing

4

Gradients sharing

6

Complete local model updates transmission

to server

Cloud

Averaging of the local models

7

Online network

Target networkTarget networkTarget network

argmax ai*ai
*

Qi(s,ai)

CVX optimizer CVX optimizer

End-devices computing

resources optimization

Joint task offloading and

resource allocation

Edge severs computing

resources optimization

Fig. 2: Proposed solution approach.

factor. If we consider the Markov property, then we can write
the value function as:

Vi(g, πi, π−i) = ui(gt, πi, π−i) + γ
∑
g′∈G

Pgg′(πi, π−i)Vi(g
′, πi, π−i).

(23)

where ui(gt, πi, π−i) = E
[
Qi(g, πi, π−i)

]
, and Pgg′(πi, π−i) is the

state transition probability. A NE exists if for each πi, if the following
exists:

Vi(g, π
∗
i , π

∗
−i) ≥ Vi(g, πi, π

∗
−i), ∀g ∈ G. (24)

To solve this MDP, we use Q-learning. The optimal Q-value
function Q∗

i (g, ai) is calculated through:

Q∗
i (g, ai) = ui(gt, ai, π

∗
−i)

+ γ
∑
g′∈G

Pgg′(π
∗
i , π

∗
−i)Vi(g

′, π∗
i , π

∗
−i), (25)

where Vi(g
′, π∗

i , π
∗
−i) = maxai∈AiQ

∗
i (g, ai). Now, write (25) as

follows:

Vi(g, πi, π−i) = ui(gt, πi, π−i) + γ
∑
g′∈S

Pgg′(πi, π−i) max
ai∈Ai

Q∗
i (g, ai).

(26)

It is very difficult to obtain information on the transition probability.
Therefore, for Q-learning, Q∗

i (g, ai) is updated by:

Qi(g, ai) = Qi(g, ai) + δ{E[ui(gt, ai, π−i)

+ γ max
a′
i∈Ai

Qi(g
′, a′

i)−Qi(g, ai)}], (27)

where δ denotes the learning rate which helps in determining the
Q value. The value of δ should be selected appropriately in order
for fast convergence. Additionally, for the action selection, there is
a need for tradeoff in action selection. We use ϵ greedy strategy for
selecting action. The random action is selected with a probability
ϵ and the action is selected with maximum reward with probability
1 − ϵ. The aforementioned Q-learning method performs better for
small state and action spaces. For large action spaces, Q-learning do
not perform well. Therefore, there is a need for a better approach.
To address this limitations, we can use deep Q-network (DQN) that
uses a neural network to represent action and state space. DQN uses
two networks: (a) online network and (b) target network. The use of
target network is to stabilize the overall performance. In Q-network,
the following loss function is used to stabilize the performance.

Li(θ) = Eg,ai,ug,ai
,g′ [(y

DQN
i −Qi(g, ai; θ))

2], (28)

where yDQN
i = ui(g, ai)+γmax

a
′
i∈Ai

Qi(g
′
a
′
i; θ

−. Here, the term
θ− is the target network weights. To chose the action ai, one can
use online network Qi(g, ai; θ). On the other hand, the weights of
the target network are kep fixed for many rounds to provide more
stability. Further, experience replay strategy further improves the
stability. The current transition is stored in a reply memory. Instead
of using only the current transition, we previous transition are also
considered for better results. Although DQN offers some merits, it
still has a challenges of over optimistic estimation. To address this
issue, we can use a double DQN (DDQN) that is based on using a
different expression for yDQN

i . For DDQN, yDDQN
i can be given by:

yDDQN
i = ui(g, ai) + γQi

(
s
′
, max
a
′
i∈Ai

Qi(g
′
a
′
i; θ

−

)
. (29)

Fig. 2 shows the steps of DDQN. DDQN uses both online and
target network to compute optimal value Qi(g, ai; θ). Then, with the
discount factor and current reward, the yDDQN

i is computed. Next,
we present simulation results.

IV. PERFORMANCE EVALUATION

In our simulation environment, we consider 20 agents and 5
edge server-based BSs. An area of 1000 × 1000 is considered for
simulations. All the devices are generated randomly and agents are
deployed on them. Meanwhile, the BS locations are keep fixed.
We use various learning rates, i.e., δ = 0.0001, 0.001, 0.00001.
The number of resource blocks are considered equal to the num-
ber of agents. Every agent will get one resource block. For
agent, we use a fully connected network architecture that con-
sists of an input, two hidden layers (i.e., nn.Linear(64, 32) and
nn.Linear(32, Num. of BSs ∗ Resource blocks)), and an
output. Furthermore, a ReLU activation function is used. For action,
we use ϵ-greedy policy. The value of ϵ is chosen linearly between 0
and 0.9. Fig. 3a shows the performance of DDQN for various values
of learning rate. For the learning rate 0.001, the performance is worst
and does not improve with an increase in number of episodes. For the
learning rates 0.0001 and 0.00001, the performance improves with
an increase in number of episodes. For the learning rate 0.0001, the
performance is the best. Another Fig. 3b shows the cost vs. episodes
for DDQN using various learning rates. On the other hand, we study
the performance of various schemes (i.e., proposed and baselines)
in Fig. 3b. It is evident that the proposed scheme outperforms both

0 100 200 300 400 500
Episode

0.005

0.010

0.015

0.020

0.025

Cu
mu

lat
ive

 re
wa

rd

DDQN (= 0.0001)
DDQN (= 0.00001)
DDQN (= 0.001)

(a)

0 100 200 300 400 500
Episode

50

100

150

200

250

cos
t

DDQN (= 0.0001)
DDQN (= 0.001)

(b)

0 100 200 300 400 500
Episode

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Cu
mu

lat
ive

 re
wa

rd

DDQN (agents=10)
DDQN (agents=20)

(c)

Fig. 3: (a) Cumulative reward vs. episodes for proposed DDQN using various values of learning rates, (b) cost vs. episodes for proposed
DDQN using various values of learning rates, and (c) Cumulative reward vs. episodes for proposed DDQN using various number of agents.

0 50 100 150 200 250 300
Episode

0

20

40

60

80

100

Ste
ps

DDQN (= 0.0001)
DDQN (= 0.00001)
DDQN (= 0.001)

(a)

0 100 200 300 400 500
Episode

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Cu
mu

lat
ive

 re
wa

rd

DDQN-Resource allocation
DDQN-Task-offloading
DDQN-Task-offloading+Resource allocation

(b) (c)

Fig. 4: (a) Steps needed to meet QoS vs. episodes for proposed DDQN using various values of learning rates, (b) steps needed to meet QoS
vs. episodes for proposed DDQN using various number of agents, and (c) cost for proposed convex optimization scheme vs. random scheme.

baselines which shows its superior performance. Fig. 3c shows the
reward vs. episodes for various numbers of agents. Again, it is evident
that our proposed scheme has a stable performance for a number of
agents. Now, we study the number of steps needed within episodes
for all devices to reach the QoS (i.e., latency less than a threshold).
It is evident from Fig. 4a that performance of DDQN for learning
rate 0.0001 is better as it needs less steps to reach the QoS by all
devices. Additionally, for different number of agents, the number of
steps needed to fulfill QoS for various number of devices remains
stable for learning rate 0.0001. Finally, we compare the performance
of convex optimization-based local computing resource optimization
vs. equal computing resource assignment. The convex optimization
scheme outperforms equal allocation scheme.

V. CONCLUSION

In this paper, we have considered SFL and model optimization
problems for local computing resource optimization, task-offloading,
and resource allocation. Additionally, we considered QoS constraints
to ensure the latency for SFL. We used optimization theory and
DDQN for optimizing computing resource allocation and joint task-
offloading as well as resource allocation, respectively. Our extensive
analysis showed the better and more stable nature of our proposed
solution. We concluded that the framework and solution can be
applied to many SFL-based practical applications.

REFERENCES

[1] L. U. Khan, M. Guizani, A. Al-Fuqaha, C. S. Hong, D. Niyato, and
Z. Han, “A joint communication and learning framework for hierarchical
split federated learning,” IEEE Internet of Things Journal, 2023.

[2] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed:
When federated learning meets split learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 36, no. 8, 2022, pp.
8485–8493.

[3] G. Yansong, M. KIM, S. ABUADBBA et al., “End-to-end evaluation
of federated learning and split learning for internet of things,” in
Proceedings of 2020 International Symposium on Reliable Distributed
Systems (SRDS), Shanghai, China, vol. 4, 2020.

[4] X. Liu, Y. Deng, and T. Mahmoodi, “Wireless distributed learning: A
new hybrid split and federated learning approach,” IEEE Transactions
on Wireless Communications, vol. 22, no. 4, pp. 2650–2665, 2022.

[5] V. Turina, Z. Zhang, F. Esposito, and I. Matta, “Federated or split? a
performance and privacy analysis of hybrid split and federated learning
architectures,” in 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD). IEEE, 2021, pp. 250–260.

[6] S. Otoum, N. Guizani, and H. Mouftah, “On the feasibility of split
learning, transfer learning and federated learning for preserving security
in its systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 24, no. 7, pp. 7462–7470, 2022.

[7] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A
joint learning and communications framework for federated learning
over wireless networks,” IEEE transactions on wireless communications,
vol. 20, no. 1, pp. 269–283, 2020.

[8] R. S. Klein, H. Luss, and U. G. Rothblum, “Relaxation-based algorithms
for minimax optimization problems with resource allocation applica-
tions,” Mathematical programming, vol. 64, pp. 337–363, 1994.

[9] J. Nievergelt, “Exhaustive search, combinatorial optimization and enu-
meration: Exploring the potential of raw computing power,” in Interna-
tional Conference on Current Trends in Theory and Practice of Computer
Science. Springer, 2000, pp. 18–35.

[10] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep
reinforcement learning for user association and resource allocation
in heterogeneous cellular networks,” IEEE Transactions on Wireless
Communications, vol. 18, no. 11, pp. 5141–5152, 2019.

