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ABSTRACT
This paper introduces LiSWARM , a low-cost LiDAR system to detect
and track individual drones in a large swarm. LiSWARM provides
robust and precise localization and recognition of drones in 3D
space, which is not possible with state-of-the-art drone tracking
systems that rely on radio-frequency (RF), acoustic, or RGB image
signatures. It includes (1) an efficient data processing pipeline to
process the point clouds, (2) robust priority-aware clustering algo-
rithms to isolate swarm data from the background, (3) a reliable
neural network-based algorithm to recognize the drones, and (4) a
technique to track the trajectory of every drone in the swarm. We
develop the LiSWARM prototype and validate it through both in-lab
and field experiments. Notably, we measure its performance during
two drone light shows involving 150 and 500 drones and confirm
that the system achieves up to 98% accuracy in recognizing drones
and reliably tracking drone trajectories. To evaluate the scalability
of LiSWARM , we conduct a thorough analysis to benchmark the sys-
tem’s performance with a swarm consisting of 15,000 drones. The
results demonstrate the potential to leverage LiSWARM for other
applications, such as battlefield operations, errant drone detection,
and securing sensitive areas such as airports and prisons.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; Real-
time systems.
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Figure 1: The proposed concept of using low-cost off-the-shelf
LiDAR system for drone swarms detection and tracking.

1 INTRODUCTION
Drone swarms have recently exhibited a tremendous growth in
importance. First, we have witnessed a significant shift towards
replacing traditional fireworks with drone light displays across the
globe, driven by a growing focus on sustainability and safety. Drone
light shows produce no emissions and do not leave behind chemical
residues, making them a far more eco-friendly option [53, 66]. For
example, in the U.S., the Fourth of July 2024 celebrations saw the
extensive use of drone shows in hundreds of towns, signaling a
commitment to more environmentally friendly festivities [88]. In
China, the recent festivities were transformed with a synchronized
display of up to 14,000 drones [13]. Australia is considering the
use of drone shows for New Year’s Eve celebrations in Sydney to
reduce the risk of bushfires [86]. This global movement illustrates
a growing recognition of the benefits of drone displays in offering
captivating visual experiences while addressing the ecological and
safety challenges posed by traditional pyrotechnics. In addition,
drone swarms pose an increasing threat to aviation and ground
assets in both commercial and military contexts.

We interviewed four drone-show companies to study the current
practices of drone swarm management and obtained a few valuable
insights as follows. The most pressing question these companies
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aim to address is: How can we perform a comprehensive scan to
know what is in the airspace in real-time? The current practice is
to use platforms like Aerial Armor (acquired by Dedrone), which
eavesdrop on the RF channel to detect and localize unwanted rogue
drones. However, this app often does not pick up all such drones,
and the team usually has to manually search for the pilot and
ask them to bring the drone down. More importantly, it does not
provide a precise understanding of what is in the airspace as non-
RF-emitting objects are undetectable.

In addition to policing drone swarms, managing drone swarms
presents significant challenges due to their complex behaviors. The
interviews revealed that drones fail at the rate of about 6 out of every
1000 drones flying during a drone show, and that the failure modes
are such that recovery of the drones is often challenging because
the drones stop sending telemetry. Once the drones go missing,
it is difficult to estimate where the faulty drones may have flown
due to the unpredictability of drone flight behaviors and Byzantine
failure modes. Furthermore, drone unpredictability is heightened
by being susceptible to jamming attacks [15, 59, 78]. An Inertial
Measurement Unit (IMU) sensor can be disrupted using ultrasound
jamming [87], while GPS sensors can be easily spoofed using a GPS
replay attack with relatively inexpensive equipment [34]. Collisions
between drones are another concern, which may arise from factors
such as adverse weather conditions, hardware degradation (like
worn-out propellers), or human intervention [16]. These collisions
can result in unpredictable behaviors, complicating the task of
controlling or policing drone swarms effectively.

Detection and tracking of drones have been active research di-
rections with various approaches such as camera-based [18, 85],
acoustic-based [9, 32], radar-based [10, 48], RF-based [63, 64], LiDAR-
based [29, 39], and multimodality-based systems of these sensing
methods extensively studied in both academia and industry. How-
ever, none of the existing approaches have been confirmed to reliably
detect and track 3D swarms at long distances. In particular, camera-
based systems leverage advanced computer vision techniques to
identify and track drones visually, providing high-resolution data
but facing challenges in low-visibility conditions, especially night
operation. Acoustic-based systems detect the unique sound signa-
tures of drones, offering a passive detection method but struggle
with ambient noise interference. Radar-based systems, widely used
in military applications, provide robust detection capabilities over
long distances but struggle both with detecting drones made from
plastic materials, which are common in commercial and industrial
drones today, as well as addressing ground clutter exacerbated by
low-flying drones. RF-based systems utilize the radio signals emit-
ted by drones for detection and tracking, offering the potential for
long-range monitoring but require the drones to actively transmit
signals. When tracking swarm, passive RF-based systems so far
are limited to 10 drones with an average spacing of 15m between
them [50]. Similarly, camera-based systems to track drone swarms
have been confirmed to support up to 30 drones at a very close
range of 9m [40]. Current LiDAR-based techniques [1], [30], [19]
have only been validated on a couple of drones, do not differenti-
ate between drones and other flying objects like birds, and have
not been shown to scale to drone swarms. One of the common

LiDAR-based sensing systems is SLAM (Simultaneous Localiza-
tion and Mapping) [20], which creates a real-time map of the sur-
roundings for autonomous systems indoors and outdoors. However,
the performance of SLAM in drone swarm monitoring is unclear.
Multimodality-based systems combine these different methods but
face complexities in integration and high costs.

To address these limitations, this research investigates the devel-
opment of a LiDAR-based system, LiSWARM , for real-time 3D drone
detection and tracking, with the potential to scale up and simultane-
ously track thousands of drones. LiSWARM scales to detect 150–500
real drones and up to 15,000 drones in simulation. LiSWARM is
designed specifically to track and detect drone formations at large
scales to address the performance gaps of previous systems. Key
innovations of the LiSWARM system include a distance-aware com-
puting strategy, which dynamically downsamples LiDAR point
clouds based on the distance to detected objects, thereby signifi-
cantly improving computational efficiency. LiSWARM enables the
reconstruction of drone trajectories, allowing for real-time monitor-
ing and detection of malfunctioning drones—vital for applications
in military, security, and drone shows. Note that the key distinction
between existing SLAM-based methods and LiSWARM lies in their
respective objectives: SLAM (e.g., LOAM, F-LOAM [92]) is primar-
ily concerned with environmental mapping and self-localization,
often for ground-based vehicles or small-scale UAV navigation in
structured or predefined environments. In contrast, LiSWARM is de-
signed to enable real-time detection and tracking of large, dynamic,
fast-moving airborne drone swarms without reliance on predefined
maps or landmarks. While traditional SLAM techniques focus on
localization and self-positioning, which may limit their capacity for
tracking large drone formations, LiSWARM focuses explicitly on
scalable UAV detection, offering a complementary approach that
does not directly compete with SLAM systems but rather addresses
the unique challenges posed by drone swarm monitoring.

A critical advantage of LiSWARM is its ability to detect both lit
and unlit drones, making it highly effective in night-time opera-
tions. Unlike vision-based systems, which rely on external lighting
conditions, LiSWARM leverages LiDAR’s active sensing capabili-
ties to monitor drones in low-visibility environments. Furthermore,
LiSWARM’s scalability allows it to be deployed in large-scale ap-
plications such as drone light shows, security monitoring, and
aerial traffic management. Figure 1 illustrates the utility of using
LiSWARM to monitor drone swarms. This snapshot point cloud
was obtained via one scan of the LiSWARM system at an actual
drone light show. The RGB image shows only lit drones, while the
full LiSWARM scan reveals all drones in the show, where about
half of the total are unlit drones. The system enables a drone show
operator to continuously monitor the health of all of their drones. It
also can be used to identify, track, and recover faulty drones as well
as identify and track foreign non-show drones that may interfere
with the drone show.

We make the following contributions in this paper:
• We develop a sophisticated signal processing pipeline and

neural-network-based algorithms to detect and recognize individ-
ual drones in the swarm with up to 98% accuracy.

• We design fast computing methods to achieve real-time drone
detection and tracking of a large drone swarm using novel distance-
aware computing and CPU-GPU load balancing techniques.
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• Through real-world evaluations of drone shows involving 150
and 500 drones at 200m, we demonstrated that our system is able
to reliably track drones with delays of only tens of milliseconds.
Through our spatial resolution-based disambiguation test, we prove
that decimeter-level recognition accuracy is achievable.

• We conduct a comprehensive analysis to validate the system’s
performance across diverse scenarios, including varying ranges,
different drone speeds, and a wide spectrum of lighting conditions,
ensuring robust and reliable operation in real-world environments.

• We conduct a thorough scalability analysis, including detailed
benchmarking, to evaluate the system’s ability to effectively moni-
tor and manage tracking operations involving up to 15,000 drones
through simulation to confirm the system’s effectiveness. The goal
is to assess computational efficiency rather than to precisely repli-
cate the physical behavior of the swarm.

While this study centers on civilian drone shows, we believe that
LiSWARM’s ability to speedily recognize and track drones day and
night could be applicable to many other scenarios, such as battle-
field operations [27, 35, 36, 75], errant drone detection, and secur-
ing sensitive areas such as airports and prisons. On the battlefield,
real-time awareness of the airspace is critical for identifying and
neutralizing hostile drones that could endanger troops or disrupt
missions. At airports, errant drones—whether flown accidentally by
hobbyists or intentionally by malicious actors—pose serious threats
to flight operations and have temporarily closed major airports like
Gatwick, Dubai and Frankfurt [80]. In prisons, drones are increas-
ingly being used to smuggle contraband, including drugs, weapons,
and mobile phones. In 2023, reports from several U.S. correctional
facilities highlighted cases where drones were used to deliver illicit
items over prison walls under the cover of darkness [62].

2 CHALLENGES

Range 
impact

Recognition challenges

Motion blur by bird

Motion blur 
by drone

Figure 2: Challenges associated with LiDAR-based recognition and
tracking of drones.

We face the following major challenges to show that LiDAR-
based detection and tracking of drone swarms is feasible and prac-
tical. First, Figure 2 shows that distinguishing drones from other
flying objects such as birds is a challenge. We need to train machine
learning techniques to find sufficient differentiation between po-
tentially similar point clouds. Further, as the range increases, the
reduced number of reflected points from a distant object makes it
even more difficult to recognize and classify that object as a drone
or other object. Further, due to the finite scanning rate of the LiDAR
sensor, pointclouds from complete scans are collected at a slow rate
relative to the motion of the drone, resulting in motion blur in the

collected pointcloud data from an object that can remove distin-
guishing features, resulting again in greater difficulty telling apart
the smeared pointcloud of a drone from other objects.

Second, the end to end latency of our detection and tracking
system must be fast enough to accommodate the different use cases
for LiSWARM . In cases such as detecting errant drones in airport
airspaces, as well as battefield counter-drone interdiction, we need
real time detection, localization and tracking of the drone threats.
Therefore, while our classifiers must be accurate, the inference must
also be nimble enough to provide rapid real time response.

Third, our systemmust scale to handlemonitoring of the airspace
for large drone swarms, potentially up to tens of thousands. There-
fore, the rate of point of cloud processing of objects must scale so
that system performance is able to detect and track drone swarms
using optimization techniques such as hardware acceleration and
software parallelization.

3 SYSTEM OVERVIEW
To overcome the above challenges, we propose to develop LiSWARM ,
a low-cost LiDAR system to detect and track individual drones in
a large swarm in real time as illustrated in Figure 3. LiSWARM
provides robust, precise and real-time localization and recognition
of drones in 3D space, which is not possible with state-of-the-art
drone tracking systems that rely on radio-frequency (RF), acoustic,
or RGB image signatures. LiSWARM consists of three major stages,
namely data preprocessing, detection, and tracking.

3.1 Data Preprocessing
Our end-to-end system starts with a data acquisition block which
we furnish with LiDAR point cloud data. The system converts the
raw point cloud stream into point cloud snapshots or frames. Then,
we denoise them by removing outlier points based on reflectivity
and spatial location. Next, we remove the ground from the point
cloud frames using the random sample consensus (RANSAC) algo-
rithm [25], which implements denoising and filtering operations
where ground removal is used to discard ground clutter by itera-
tively fitting a plane to the ground points and removing the inliers.
In this way, the system filters out points from trees, buildings, and
other infrastructure considered clutter. Another filter keeps only
flying objects by maintaining a Z-axis threshold.

3.2 Detecting Individual Drones in a Swarm
The next segment of our system belongs to the localization of
drones, i.e., detection and recognition of individual drones either
in scarce or dense swarm scenarios. Since our system deals with
unlabeled, unorganized raw pointcloud data, we first use spatial
clustering to identify each object separately from the clean and
processed pointcloud data generated by the preceding data pro-
cessing block. After that, all the identified object clusters are also
rendered as alphashape objects. An alphashape is a spatial feature
that provides a way to model the shape of a set of points in 2D or
3D, capturing both the outer boundary and interior voids. These
two types of inputs: (i) simple pointcloud of each identified object
cluster and (ii) the associated alphashape objects, are fed into the
recognition block where we use a pre-trained Neural Network (NN)
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Figure 3: LiSWARM system overview.

classifier. This NN finally identifies the object clusters into drone
and non-drone (likely birds) classes.
3.2.1 Clustering the swarm.
Spatial Clustering. After preprocessing the point cloud to retain
only relevant flying objects (e.g., drones, birds), spatial clustering
is applied to isolate each object in 3D space. Each cluster is then
processed to extract key features, like centroid and bounding box
dimensions, preparing the data for recognition and further analysis.

The system considers the temporal feature of reflected point re-
ception by the LiDAR system based on the spatial characterization,
which mimics the "dark adaptation" of the human eye by accumulat-
ing light over time. We concatenate single-frame point clouds into
sequences of 1, 3, 5, or 10 frames (100ms, 300ms, 500ms, or 1000ms)
using a sliding window technique. The number of reflected points
is directly proportional to distance, thus according to the cluster
centroid distance, it is decided how many consecutive frames will
be concatenated to accumulate points just like the light in the eye.

Alphashape. Alphashape, a shape descriptor from computational
geometry and generalization of convex hulls, are used for object
recognition with Delaunay triangulation as a fundamental step [21].
We use ‘alphashape’ of each cluster as an additional feature to
be used for each cluster during classification. Figure 4 shows the
reconstructed 3D convex hulls of UAV2 used in our experiments
at 2 different frame times to visualize the impact of frame time in
shape recognition.

500ms frame

Figure 4: Different Alphashapes of the reconstructed 3D surface
models of UAV2 at 2 different frame times

3.2.2 Classification Algorithms. We explore both traditional ML
approaches like kNN, SVM, Random Forest, and Neural network
(NN) models for recognizing the drones in the detected swarm
of pointclouds. While ML approaches offer simplicity and com-
paratively less computation time, these approaches struggle with
scalability and the intricacies of LiDAR data. Again NNs are well-
suited for classifying LiDAR data due to their ability to handle
high-dimensional inputs and to learn complex spatial relationships.

Deep NN techniques like PointNet [70] could be a great refer-
ence to start our implementation. However, after the preliminary
studies, we found that PointNet suffered a longer delay than ML
methods during the evaluations due to its use of T-Net layers for
input and feature transformation to preprocess pointcloud data to
handle alignment issues. Since our system pipeline already has data
preprocessing and cluster characterization sections prior to the
classifier, we remove the T-Net layer from our NN model for faster
computation. The key idea is to utilize the reflectivity or intensity
value of each point as it carries significant information about any
object’s outer surface along with the X, Y, Z 3D coordinates and
to do that we need to have input layer that accepts data with 4
attributes. While PoinNet input layer size is (nx3), we employ an
input layer with size (nx4) which can incorporate the reflectivity at-
tribute. We also modified the feature extractor from shared MLP to
Conv1D since tasks with Conv1D can be parallelized and optimized
with GPU and hardware.

Validation.We evaluated the different ML algorithms for their
recognition accuracy, using real world LiDAR point clouds col-
lected from drones and birds. We employ three quadcopter drones,
UAV1, UAV2, and UAV3, as different airborne objects for detection
and tracking. We also use the LiDAR sensor to scan birds resting,
swimming, and flying while maintaining all safety measures for
the wildlife. We conduct experiments for LiDAR scan at various
outdoor locations during noon, afternoon, and evening at differ-
ent places to account for variability in lighting, speed, and range.
These experiments covered diverse flight paths and distances at
varying speeds. LiSWARM was evaluated for scenarios with indi-
vidual drones or small drone groups (2–3 drones) to distinguish
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Figure 5: Classification performance on two tested drones.

drones from other flying objects, like birds, and track drones by
reconstructing their trajectories. Key factors affecting LiDAR per-
formance include target distance, object speed, lighting conditions,
and spatial separation between drones for unique identification.

We detect flying objects across a range of 5m to 300m under var-
ied speeds and lighting conditions. UAV1 and UAV3 are detectable
up to 220m, UAV2 up to 180m, and birds up to 180m. After detection,
the next step is recognizing drones among other flying objects by
classifying point cloud clusters into two categories: drones and
other objects. Using kNN, SVM, Random Forest, and a neural net-
work (NN), classifiers are evaluated on a dataset independent of
distance, speed, or lighting. The NN classifier achieves the best
performance, with 97.79% accuracy for 10 frames and 91.27% for
single frames, as shown in Figure 5.

3.3 Tracking Individual Drones in the Swarm
Once point clouds associated with drones are recognized, those
point clouds are passed over to the next block in the pipeline: the
tracking algorithm. Figure 6 illustrates the problem of discontinu-
ities in the trajectories due to the coarse frame sampling, which is
at best once every 100 ms with our chosen LiDAR system. To tackle
the discontinuities, we then interpolate points to fill-in the gaps
between LiDAR scans caused by fast-moving drones. In this way we
reconstruct the continuous flight paths of single/multiple drones.
In particular, the continuous stream of points from the merged
pointcloud are identified together using neighborhood clustering
based on the sequence of 3D spatial location values. This gives us a
bounding box of the object, and we then take the centroid of this
object and connect it with the closest drone trajectory in a straight
line using linear interpolation. This provides us with a piecewise
linear trajectory. Since such a path is subject to unrealistic sharp
and abrupt changes in direction at each point, creating sharp an-
gular transitions between adjacent points, then we apply Gaussian
smoothing. Figure 6b) shows the reconstructed continuous flight
paths from their discrete pointcloud counterparts.

4 SYSTEM OPTIMIZATION
While the components described deliver promising detection and
tracking accuracy, the process remains limited to offline execu-
tion. Achieving real-time (i.e., sub-second delay) detection and
tracking requires innovative computer systems techniques. We
make multiple directed efforts to optimize the performance of our
system by first exploring multiple spatial clustering algorithms
and benchmarking them with simulated drone sample data, sec-
ondly conditioning the chosen clustering technique with a distance
priority-based approach and finally by utilizing the full potential

a)

b)

Pointcloud of 
moving drones

Reconstructed 
trajectories of 

drones 

UAV1 
Speed: 

14.75m/s

UAV2
Speed: 
6m/s

Flight 
Duration: 33s

Flight 
Duration: 21s

Figure 6: Trajectories reconstructed for 2 different UAVs at different
ranges and speed scenarios, a) point clouds of UAV1 and UAV2 in
motion 14.75m/s up to 120m and 6m/s up to 26m, b) reconstructed
trajectories.

of parallel processing. We implement multi-threading for each of
our system blocks described above to balance the high-volume data
load of pointclouds between CPU and GPU.

4.1 Prioritized Distance-aware Computing
Traditional clustering methods like: K-Means, hierarchical, etc. clus-
tering cannot support real-time operation as they introduce con-
siderable delays (i.e., 2.19 seconds for 150 real drone clusters and
127.6 seconds for 10000 drone clusters). To address this, we inves-
tigate the issue and find out that the spatial clustering algorithm
is handling an unusually large amount of data points. And since
such clustering algorithms work with all the associated points fed
into them as input data to make clustering decisions and this task
cannot be distributed among multiple computing nodes, there is a
bottleneck in terms of computation time in the case of large point-
cloud data. Since the objects located closer to the sensor reflect a
large number of points to the sensor receiver compared to far away
objects [37], [49], then we opt for downsampling the pointcloud to
enable faster processing at the cost of potentially impacting accu-
racy. As we will show, the impact on accuracy is modest while the
improvement in delay is dramatic.

We use the spatial clustering algorithmwhile applying a distance-
aware adaptive downsampling on the input data based on voxel
grid filtering which reduces redundant points by dividing the space
into smaller, equally sized 3D regions and merging all the points
within that voxel grid [81], [54]. To preserve shape information
while reducing redundant points, voxel grid sizes are set according
to distance range: larger voxel sizes are used for close-range points
to downsample aggressively, while smaller sizes are applied to long-
range points for finer preservation. Figure 7 depicts this process
of distance-aware computing where we use a step function for
applying the voxel grid size on UAV1 pointcloud data based on 3
distance ranges: 0 to 100m, 100 to 150m and 150m to beyond. We
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Figure 7: Adaptive downsampling operation based on object dis-
tance and its impact on object pointcloud, a) step function used to
control voxel grid size, b), c), d) represent actual pointcloud and their
downsampled version of UAV1 at 5m, 100m and 180m respectively

select this distance range based on the range sensitivity analysis
of the LiDAR sensor in our experiments. For this specific example,
we are being able to reduce 9413 reflected points from a drone at
5m away into just 52 points with a voxel grid size of 0.1m while
maintaining the shape of the drone. Conversely when UAV1 is at
100m and 180m, the numbers of reflected points are scarce and
downsamplings are applied on them with voxel grid size of 0.075m
and 0.05m to produce proportional reductions of points.

4.2 CPU-GPU Load Balancing for High-speed
Clustering

Clustering takes a significant portion of the time in LiSWARM . The
challenge is depicted in Figure 8. To prepare for this research, we
conducted a series of in-lab and outdoor experiments to assess
the feasibility of tracking UAVs using our LiDAR system. In our
outdoor experiments, we scanned test drones at various locations
with diverse backgrounds under both daytime and nighttime condi-
tions. Figure 8 showcases two examples of raw LiDAR point cloud
data collected during these tests. The image depicts two drones
approaching the sensor at high speed, with dense trees forming the
backdrop. While it is promising to observe how LiDAR accurately
captures the drones’ locations and trajectories, the scans also indis-
criminately record all objects in the scene—drones, ground surfaces,
trees, poles, streets, and other infrastructure—producing a dense
point cloud. Most of the captured points correspond to irrelevant
features such as the ground and background clutter, which do not
contribute to the goal of drone detection and tracking.

We explored some cutting-edge clustering algorithms including
DBSCAN [22], HDBSCAN [56], OPTICS [6], and KMeans [31] and
show their running time as well as the total number of clusters that
are distinguished by each of the methods on 10k sample drones in
Figure 9. As shown in the figure, DBSCAN achieved the highest
accuracy in distinguishing distinct clusters. HDBSCAN and OPTICS
are adaptive but slower and less accurate compared to DBSCAN.

Next, to accelerate the clustering phase of drone swarm detection
using LiDAR data, we implemented the DBSCAN algorithm on a
GPU using CUDA [52]. By parallelizing the neighbor search and
distance calculations, critical components of DBSCAN, we lever-
aged the GPU’s ability to handle thousands of threads concurrently,

Figure 8: Example clusters of unrecognized objects must be identi-
fied by the system

significantly reducing clustering time for large clusters. To maxi-
mize the performance on GPU and reduce latency in data transfer
between CPU and the GPU, we used pinned memory and asyn-
chronous data transfer via CUDA streams. While pinned memory
enables faster data movement between the CPU and GPU by pre-
venting the operating system from swapping memory pages in
and out of physical memory, asynchronous data transfer enables
overlapping computation with memory transfers by allowing data
to be sent and computation to proceed independently. We used
brute force for nearest neighbor computations, Euclidean distance
as the metric for calculating distances between points.

Figure 9: Clustering results with different clustering methods
For cluster characterization, which involves further filtering and

analyzing clusters based on geometric properties (e.g., bounding
box dimensions and centroids), we utilized multi-threading on the
CPU over unique labels identified by DBSCAN. Independent tasks,
such as calculating the bounding box dimensions and centroids of
individual clusters, were distributed across CPU cores. To avoid
stalls caused by synchronization overhead, computation on the
CPU was overlapped with GPU processing using streams and con-
current kernel execution. This ensured continuous utilization of
both processing units.

This combination of GPU-accelerated DBSCAN and CPU-based
parallel cluster characterization reduced overall computation time
significantly, enabling real-time analysis of LiDAR data for de-
tecting and recognizing drone swarms. The approach is scalable
for large swarms, making it suitable for scenarios involving high-
density swarms or expansive environments

5 DETECTION AND TRACKING OF DRONE
SWARM SHOWS

5.1 Setup
To validate LiSWARM’s performance in real-world swarms, we
evaluate it at 2 droneshow events: (Droneshow1) with 150 drones &
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Figure 10: Experimental setup using LiDAR to scan the drone swarm
at Droneshow1.

a) RGB image of drone
swarm formation 1 with
both lit and unlit drones

b) LiDAR point cloud frame of drone
swarm formation 1, the unlit drones

captured by lidar are annotated 

Figure 11: Drone swarm detection with lit and unlit drones.

(Droneshow2) with 500 drones, with the experimental setup shown
in Figure 10. Since all the drone shows take place during the night
and in a secured area, all our LiDAR scans of drone swarms are from
the nighttime and from a certain distance outside the secured area.
We use LiDAR hardware connected to a Linux-based compute node
with one NVIDIA A100 GPU and 16 CPUs cores. Information on
the specific model of the hardware and its setup can be obtained by
contacting the authors of the paper. The data are processed through
Matlab R2023b and CUDA 11.8.

Note that we explored a variety of LiDAR types including me-
chanical, solid-state, flash, and FMCW. Mechanical LiDAR offers
high resolution and range but has wear-prone moving parts [71].
Flash LiDAR provides fast data acquisition but has limited range and
resolution [60, 90]. FMCW LiDAR offers high precision and inter-
ference immunity but is expensive and complex [76, 96]. Solid-state
LiDAR is robust and potentially cheaper but with a shorter range
and lower resolution [47, 89]. Our preliminary study identified that
solid-state LiDAR, as the most suitable for practical, scalable, low-
cost LiDAR-based swarm sensing. The LiDAR had a convenient
programmable API, allowing us to set a maximum frame rate of 10
frames/sec (100 ms per frame). The advertised distance is up to 500
m. The Field of View (FOV) is 18 degrees with a rosette pattern.

5.2 Swarm Sensing and Visualization
LiSWARM offers the exciting possibility of being able to sense every
drone in 3D within a large drone swarm. Drone light shows are
perfect for testing this hypothesis, as they consist of large number
of drones tightly packed and typically arranged in a variety of
different formations while also transitioning conveniently from
formation to formation during the show.

a) b)

Minimum 
differential distance 
of 1.85m between 

two adjacent drones

Figure 12: a) RGB image frame of a drone swarm formation from
a camera placed below, b) LiDAR point cloud frames visualized on
three different 3D planes.

5.2.1 Swarm Visualizations. Visualizing the entire swarm, includ-
ing unlit drones, on a computer offers a complete overview of the
airspace activity. To be specific, LiSWARM detects unlit drones in-
visible within the swarm, and provides both location and depth
information, allowing the scene to be viewed from any plane, reveal-
ing swarm formations or structures not fully perceived from one
viewpoint. Consider two instances illustrated in Figure 11 and 12.
Figure 11 (a) shows an RGB image and its corresponding point
cloud representations (both representations are time-synchronized)
of one specific swarm formation from Droneshow1. In Figure 11
(b) the annotated elipses mark all the individual drones that were
unlit during that specific instance. It is evident if we compare the
‘star’ formation of Droneshow1 between its visual RGB and LiDAR
representation, drones located at the lower part of the formation are
unlit and invisible in the visual RGB image, however, those drones
are detected and sensed in the point cloud. Figure 12 exhibits a
painting on a cylindrical surface from Droneshow2 and presents
the other aspect of 3D visualization of a swarm at a convenient
viewing plane. From the visual point-of-view looking up at the
drone cloud, where the sensor was also placed, it is not possible to
comprehend the information to its fullest that the formation was
trying to convey. However, by using LiDAR and its reflected 3D
point cloud, we are able to reconstruct the entire formation, and
then rotate it into the most convenient viewing plane to perceive
the complete message of the scene.

5.2.2 Swarm Trajectory Visualization. Each drone swarm com-
prises of many individual drones and during the flight of each
such swarm all the individual drones maintain a complicated flight
path to recreate diverse 3D shapes, letters or scenes. Therefore,
apparently, it seems pretty challenging to reconstruct and visual-
ize the trajectories of individual drones within a swarm. However,
using our LiSWARM LiDAR-based swarm tracking system which
benefits from the superior spatial resolution, we are able to recon-
struct drone trajectories within the swarm. In Figure 13 we present
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Figure 13: Trajectorymonitoring of drone swarm, a) 6 Target drones,
b) 12s of point cloud data, c) Reconstructed individual trajectories
within drone swarm.

the trajectory visualization of 6 such drones which are part of the
’star’ formation of Droneshow1. Here, first we select the drones
of interest from which we localize their point cloud frames from
the complete point cloud stream, then we concatenate point cloud
frames of localized drones over a duration (12s in this case) in which
we want to visualize their trajectories, and then plot and visualize
the 6 individual reconstructed trajectories.

5.3 Recognition Accuracy
We test how well our LiSWARM system is capable of identifying
objects within a swarm. We obtain recognition accuracy of our
system while it is tasked to handle a swarm of objects (both drones
and birds). For this purpose we use real drone swarm data collected
from Droneshow2 and then simulated bird swarms at similar loca-
tions to the drone swarm. The synthetic bird swarm is created from
actual bird point clouds by replicating them in 3D space. Then both
the drone swarm and bird swarm are mixed together as shown
in Figure 14 to challenge our system to perform recognition tasks
and classify the objects in the mixed swarm either as drones or
not. Then we evaluate the classification performance using ML
classifiers (kNN & SVM) and PointNet-based NN classifier. The
accuracy plots and evaluation metrics of the test instance is shown
in Figure 15 and the recognition performance establishes the fact
that, NN-based classifier performs best with 93.9% test accuracy.
We also observe that the precision and recall are both above 90% so
that the rate of false positives and false negatives are held low.

To further compare the performance of existing SLAM-based
methods and LiSWARM , we investigated the use of SLAM-based
Fast Point FeatureHistograms (FPFH) features [72]within LiSWARM
’s classification pipeline. Since SLAM and LiSWARM differ signifi-
cantly in their objectives—SLAM focuses on spatial registration and
LiSWARM on classification—only the feature extraction step from
SLAM was considered comparable except the preprocessing phase.
We extracted FPFH features from the same dataset and tested classi-
fication performance. The results showed that FPFH features led to
significantly lower accuracy compared to LiSWARM’s shape-based
features, with k-NN, SVM and Random Forest classifiers perform-
ing at 59.35%, 50.41% and 55.45% test accuracy, respectively. This
confirms that FPFH features, primarily designed for point cloud
alignment rather than classification, are not well-suited for drone
recognition in LiSWARM’s framework.

Figure 14: Drone swarm recognition test where an actual drone
swarm is mixed with a simulated bird swarm at the same 3D spatial
location.

Accuracy Plots of NN and ML Classifiers
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Figure 15: Drone swarm recognition performance with simulated
bird swarms: classification accuracy for NN, SVM and kNN classifiers
and performance metrics for NN classifier.

5.4 Real-time Performance for the Drone Shows
We present how the different performance optimizations improve
the speed and scalability of our system. First, we show how priori-
tized distance-aware computing can substantially boost speed with-
out sacrificing accuracy. Again, there is a concern about whether we
drop so many points for the sake of real-time computation: how it
will affect the recognition accuracy of the entire system andwhether
the shape information utilized by the NN model is maintained prop-
erly. We therefore test our entire pipeline with this distance-aware
computing in the clustering block and present the comparison of
distance-aware recognition accuracy vs recognition accuracy of the
system without it. We obtain the classification accuracies using the
Droneshow2 data with both generic and distance-aware computing
where the test accuracy for distance-aware computing is 94.06%
compared to 97.77% accuracy from the generic approach. The re-
duction in accuracy is 3.71% in return for reducing the end-to-end
system delay dramatically to just 0.17s for 150 real drones and 0.38s
for 10000 simulated drones.

Figure 16 illustrates the impact of distance-aware computing
alone and then both distance-aware computing with the use of mul-
tithreading for the operations associated within the clustering block
of the system pipeline. We see how significantly these optimiza-
tions improve our system performance. The y axis is logarithmic
here. We see how as the number of drones increases, distance-based
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Figure 16: Comparison of computation time taken for the clus-
tering block of system pipeline with and without distance-aware
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Figure 17: Drone swarm scalability test by replicating drones from
actual drone show, a) actual 500 drone swarm point cloud, b) sim-
ulated drone swarm that is spatially replicated 30 times to obtain
15000 drones.
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Figure 18: Scalability analysis of drone swarm as a measure of pro-
cessing time processing rate for drone swarms at different scales, a)
processing time contributions broken down into associated opera-
tions, b) processing rate.

clustering’s gains become less prominent, requiring the need for
additional speedup due to parallel processing for large swarms.

5.5 Scalability Analysis on a Swarm of 15,000
Drones

We analyze the scalability of the detection and tracking systemwith
an increasing number of drones in the swarm up to as many as the
most recent drone show (∼14,000 drones) [13], i.e., how the system
will scale up with continuous inclusion of drones in the swarm. We
perform this scalability analysis in terms of processing time which
includes the spatial clustering, cluster characterization and then
recognition task from the mixture of drone and bird swarms. We
also investigate the LiSWARM system’s processing rate to obtain
the delay of the system pipeline as a function of the number of
drones processed per unit time. In Figure 17a, in order to scale the
number of drones, we take Droneshow2’s 500 drones, and replicate
them spatially while maintaining the separation of 1.85m between
adjacent drones to create the simulated droneswarm in Figure 17b.

We present the total processing time while showing the time
taken at each major operational step as the drone swarm is scaled
up in quantity. For each number of drones, the vast majority of the
processing time is taken up by the clustering algorithm and detected
clusters’ spatial characterization, while the inference time due to
the classification is quite small. As expected total computational
time rises with number of drones in a swarm, but if we look at the
normalized rate of computational time per drone in Figure 18b, we
see that there is a clear trend towards decreasing latency per drone
as the swarm size increases, which is promising for scalability.

6 DETAILED SYSTEM BENCHMARKING
6.1 Detection Sensitivity Analysis
In this section, we evaluate the performance of LiSWARM under
different settings and environmental conditions to confirm its ro-
bustness and usability.

6.1.1 Impact of Distances. The 3 ML and the NN classifier have
been trained and tested with datasets segregated into short distance
(<50m), medium distance (51-100m), and long distance (>100m). All
4 classifiers’ distance-based performance at all 4 available frames is
shown in Figure 19. From the test accuracy plots of all 4 classifiers
at different frame times, the NN-based classifier has the highest
accuracy barring for the 5 frame case at a long distance. The high-
est accuracies obtained at different scenarios for the NN classifier
are 98% for 5 frames and 10 frames at short distances and 97% for
10 frames at both medium and long distances. One trend is evi-
dent from these test results: accuracy decreases with an increase
in target distance from the sensor, which results from the fact that
LiDAR receives fewer reflected points as the target moves further,
which was investigated in [1]. This phenomenon impedes classifi-
cation accuracy at longer distances. For this reason, we decided to
mimic the human eye’s “dark adaptation” technique, which accu-
mulates light over time when it experiences sudden darkness. In
our methodology, we concatenated multiple frames to accumulate
more reflected points from a target. This approach proves to be
working efficiently as we can look into the accuracy plots, so it is
evident that classification accuracy, in fact, increases as the number
of frames merged together is increased.

6.1.2 Impact of Target Moving Speeds. Since the NN classifier per-
forms best in general over most distances, we selected the NN
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Figure 19: Test accuracy for different range targets.

Figure 20: Test accuracy for different target velocities.

classifier to present further performance evaluations. The NN clas-
sifier has been trained and tested with a dataset segregated into
static targets at the ground, and hovering targets in the sky that are
either slow (0-5m/s), medium (5-10m/s), or fast (10-20m/s). Here
the dataset is distance-independent which means all speed-based
categories contain point clouds from different distances. The NN
classifier’s velocity-based performance at different frames is shown
in Figure 20. The highest accuracies at varied categories obtained
are 98% for static targets, 96% for hovering targets, and 90% for three
cases of motion. The accuracy plots follow the trend in which accu-
racy decreases with the increase in target speed across all frames
and this trend supports the intuition that a target with higher ve-
locity will incorporate a greater amount of motion blur. And the
interesting finding is that contrary to the performance analysis at
different ranges, in this case, accuracies are better for fewer frames
when the target is in motion.

6.1.3 Impact of Light Conditions - Day/Night Time. The NN clas-
sifier has been trained and tested with datasets segregated into
daytime and nighttime data where objects were scanned during
daylight and at night. The NN classifier’s lighting condition-based
performance at different frames is shown in Figure 21. The highest
accuracies during daytime and nighttime are 89% and 88% respec-
tively. Here accuracies slightly decrease compared to distance-based
and speed-based results because we selected long-distance target
data for this performance test. In this case, the accuracy plots estab-
lish the fact that classifier performance is not significantly impacted
by the presence of ambient light.

6.2 Tracking Performance
6.2.1 Spatial Resolution. We perform tests to disambiguate adja-
cent drones which provide insights on the spatial resolution achiev-
able by LiDAR scan and also to understand how it can be used
forntrajectory confusion alleviation. We set to determine how close

Figure 21: Test accuracy for day and night time data.

Figure 22: Spatial resolution test with 3 static UAVs, a) point cloud
of 3 UAVs at close proximity, b) alphashapes of the 3 UAVs.

2 objects can be in space, and still be identified as distinct objects.
While tested with 3 static drones at close proximity, we find this
distance to be 30cm and this is shown in Figure 22 using both point
cloud data and its alphashape representations. While conducting
such tests with drones in flight, we received “Obstacle Detection”
notifications in the drone’s original flight log whenever flying UAVs
at such close proximity that it triggered an obstacle detection warn-
ing, which occurred at 300cm or 3m. Even then, the point clouds of
the 2 drones were clearly resolved as distinct drones.

6.2.2 Trajectory Reconstruction. We verify the trajectory recon-
struction process at various ranges and speed scenarios and also
verify the trajectory estimation accuracy by comparing it with the
GPS flight data of the drone itself.

Impact of Ranges and Speeds. We conduct experiments with 2
UAVS at 2 different range and speed scenarios and analyze their
trajectories for different durations: UAV1 trajectory with 33s dura-
tion at a speed of 14.75m/s from distance 20m to 120m, and UAV2
trajectory with 21s duration at a speed of 6m/s from distance 5m to
26m. Figure 6 shows the above-mentioned 2 specific cases.

Comparison against GPS Data. To verify the accuracy of the
drone trajectory obtained from LiSWARM , we compare the com-
puted values with the baseline. We use the GPS-based location data,
extracted from drone flight log files as the baseline for the flight
path. The deviation in 3D space is then analyzed by comparing
the GPS flight path with the LiDAR-estimated trajectory. Figure 23
shows the 4 main ingredients of this accuracy analysis: original
point cloud from LiDAR, reconstructed trajectory from it using our
system, GPS flight path, and the deviation of points obtained from
2 modalities. Result shows that both trajectories are overlaid fairly
close to each other. The mean deviation of points in the trajectory
between 2 modalities is only 3m. Since GPS accuracy itself is not
confirmed and can not be considered as absolute ground truth, this
experiment proves a basis for applicability of LiDAR as tracking
modality with an existing technology. And the result implies that
LiSWARM localization accuracy is comparable with that of GPS.
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Figure 23: LiSWARM’s extracted trajectory vs. GPS data of UAV1,
a) LiDAR point cloud, b) GPS flight path, c) LiDAR reconstructed
trajectory and GPS flight path overlaid, d) error plot of LiDAR points
corresponding to GPS points.

To evaluate the accuracy of LiDAR-based trajectory reconstruc-
tion, we conducted an independent validation experiment using a
vision-based reference. Instead of relying on GPS, we deployed an
overhead drone to record the test drone’s flight path from a top-
down perspective. This approach provided an alternative ground
truth for assessing LiDAR-based tracking performance. The test
flight covered a distance range of 30m to 70m from the LiDAR
sensor. By comparing the LiDAR-reconstructed 2D trajectory with
the vision-based trajectory, we quantified the deviation between
both methods. The results showed an average deviation of 15cm
and a maximum deviation of 50cm.

By employing a reference independent of GPS enables a more
precise assessment of LiDAR-based tracking accuracy. The findings
contribute to refining LiSWARM’s performance and improving
real-time localization strategies for autonomous aerial systems.

6.2.3 Fault Management. LiDAR point clouds can also be used to
detect faulty drones in a swarm. During our regular drone flight test,
we encountered an irregular incident when one of the propellers of
UAV1 broke off and was thrown away during its flight. The drone
fell down and we lost the propeller there. However, by analyzing
the point cloud stream and the reconstructed trajectory of both the
fallen drone and the detached propeller, we were able to find and
recover the drone and propeller. Figure 24 presents the incident
in terms of the point cloud and the extracted trajectory from it.
Further, the figure documents a faulty drone found during drone
show 1, whose trajectory is shown. This finding inspires us that
LiDAR can be used to detect and manage such anomalous cases to
track and recover faulty drones.

7 RELATEDWORKS
Studies on anti-drone techniques can be categorized into detecting,
tracking, and identifying drones [5, 11, 51]. The critical issue in
flying object detection systems is differentiating drones from other

a) Point cloud of UAV1 with 
broken propeller

b) Point cloud of a faulty drone 
falling from sky at Droneshow1

Figure 24: Recognition of broken propeller in test drone and faulty
drone at Droneshow1.

flying objects using ground-based static detectors or mobile detec-
tion systems [14, 95]. This involves evaluating existing technologies
and identifying those that can effectively detect swarms of drones
[2, 41, 79, 91].

RF analysis of drone communication signals is popular for de-
tecting single or multiple drones due to its low complexity, ease of
implementation, and all-weather operation [7]. However, it strug-
gles with precise positioning, only determining signal direction
based on its angle of arrival [23, 57, 65]. Advanced RF technology
with software-defined radio platforms can detect small drones up
to 75 meters away [17, 61].

The sound from drone motors and propellers, ranging from 20
Hz to 20 kHz, creates a distinct signature allowing acoustic sen-
sors to differentiate drones using fiber-optic acoustic methods [24],
machine learning [3], and deep neural networks [84]. This method
is effective only in quiet environments and short-range detection.
Increasing acoustic sensors and using beam-forming techniques
can locate drones with up to 80% success [28, 74]. Optical and ther-
mal cameras use CNN-based algorithms for single and multi-object
detection and tracking [4, 26, 45, 55]. However, computer vision
technologies struggle with adverse weather, lighting, background
conditions, minimal detection range, and detecting small drones
[33, 42, 77, 97].

Radar can detect drones by simultaneously analyzing their Doppler
signature and echo due to the rotor blades [43, 93]. The system trans-
mits radio waves and detects the reflected signals to accurately
determine the target’s distance and speed [67]. Radar position ad-
justments are often required for drone detection during runtime.
Multi-agent reinforcement learning can adjust the radar parame-
ters’ runtime and the radar platform’s position [38]. Unlike RF or
acoustic sensing, radar’s detection coverage is unaffected by envi-
ronmental conditions. However, this technology cannot distinguish
drones from other flying objects and needs to be combined with
other sensing technologies [8, 58].

LiDAR offers precise detection, tracking, and mapping [73]. In
one study, a LiDAR system with a peak power of 700 kW extended
the detection range to 2 km [39]. Another experiment used a 3D
LiDAR system on a vehicle to detect mini drones, showing high
success for targets within 30 meters using sensors with a 100-meter
range [12, 29]. The LiDAR SLAM method can detect moving ob-
jects, and point cloud analysis calculates the confidence level of the
initial vehicle model [46, 68, 83]. Enhancing 3D-SLAM accuracy
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involves using deep-learning-based dynamic object filtering to la-
bel dynamic objects in the point cloud automatically [69]. Various
SLAM frameworks like Gmapping, Karto, and Hector SLAM can
detect moving objects, with advantages depending on the environ-
ment and trajectories [94].

Traditional LiDAR-based object recognition algorithms are de-
signed for ground targets, like PV-RCNN for vehicle detection [82],
and for general-purpose 3D object recognition, such as PointNet [70]
and PointPillars [44] which are not specifically suited for tracking
UAV swarms because of their varying 3D formations. While Point-
Net and PointPillars can detect objects in point clouds, they are
primarily optimized for small-scale, static object detection and have
limitations in terms of range and scalability when applied to large,
dynamic drone swarms.

8 CONCLUSION
This paper presents LiSWARM , a new 3D drone swarm detection
and tracking system using low-cost LiDAR. We develop techniques
for processing point cloud data and adaptively incorporating tem-
poral frames, enabling accurate detection and real-time tracking of
hundreds of drones, distinguishing them from other flying objects.
The system is shown to be capable of accurately recognizing drones
at 94% accuracy using a deep learning neural network. LiSWARM is
demonstrated on real world drone light show data and is shown to
be able to track a drone swarm of size 150 in just 0.17 seconds. Tech-
niques such as prioritized distance-aware computing and GPU/CPU
load balancing for high-speed clustering are introduced to optimize
system performance. Further, we show that the system scales well
to thousands of drones.

9 DISCUSSION
There are a number of limitations to our research. LiDAR itself is
limited by rain and fog, so other sensing modalities would need
to complement our swarm tracking system in those environments.
Our drone show data was only taken at night, while the bird point
cloud data was taken during the day, though we also flew individual
drones during the day. In the future, we hope to train our classi-
fier on more drone models, more bird species, and other airborne
objects like balloons. Our drone swarm analysis was based on two
drone shows of 150 and 500 drones each, and in the future we may
seek larger shows. LiDAR software prevented real-time streaming
of the data into our software pipeline, so we had to record the point
cloud data first, then stream it through the pipeline later to calculate
scalability performance, but we feel this is a vendor-specific obsta-
cle that will not prevent full end-to-end streaming in a production
system. We tested feasibility with one LiDAR COTS model, which
advertised up to 500 m range at 50% reflectivity of target, though
in practice we found satisfactory point cloud data for drones up
to 220m (since getting 50% reflectivity from objects in practical
application is unlikely), which we felt was a useful demonstration
detection range. In our study, we observed that a 220m detection
range was sufficient for capturing drone shows, achieved while
operating the COTS LiDAR sensor at its default power setting. This
approach ensured compliance with standard eye safety regulations,
offering a practical demonstration of the sensor’s capability for
real-world applications. We believe the range could be substan-
tially extended with custom LiDAR. In future work, we plan to

explore customizing the LiDAR system, including using higher-
power infrared sensors, to extend the detection range and enhance
performance under varying environmental conditions.

In considering the differences between LiSWARM and SLAM, it
becomes clear that while both systems rely on point cloud data,
their primary goals and methodologies diverge significantly. SLAM
is geared towards map creation and localization within a static
environment, emphasizing the alignment of sequential point clouds
and minimizing drift through techniques such as pose graph op-
timization. In contrast, LiSWARM is focused on real-time object
detection and classification, with an emphasis on dynamic tracking
of UAVs within a drone swarm. This fundamental difference means
that while SLAM works to build and refine a global map, LiSWARM
operates on identifying and tracking individual objects. This dis-
tinction also highlights how SLAM traditionally uses handcrafted
features like FPFH for feature matching and registration, whereas
LiSWARM incorporates machine learning techniques for UAV de-
tection and classification, further reinforcing the contrast between
map creation and object detection as primary objectives.

In terms of scalability analysis, our motivation and primary
objective is to assess computational feasibility rather than pre-
cisely simulating LiDAR behavior at extreme densities. Since direct
replication in the simulation does not account for the natural re-
duction in point density with distance, it tends to overrepresent
distant points, making our evaluation computationally even more
demanding than real-world conditions. In practice, LiDAR loses
point density at greater distances due to beam divergence and re-
duced reflectivity.By maintaining a uniform point density across
all drones in our simulation, we effectively tested LiSWARM un-
der a worst-case computational load, demonstrating its efficiency
even under exaggerated conditions. A more physically accurate
LiDAR simulation would involve modeling the gradual loss of re-
flected points with increasing distance, but the lack of real-world
datasets for large-scale drone swarms posed a limitation that can
be addressed in future work.

It wasn’t clear how best to measure the accuracy of reconstructed
drone trajectories since determining what represented ground truth
was a challenge. We took GPS measurements as the baseline to com-
pare against, but GPS itself is subject to error. We lacked ground
truth for the drone show trajectories, since we were not privy to
the pre-programmed trajectories of the drones used in the light
shows. Other positioning systems may be expensive to implement,
impractical, or imprecise. We will continue to seek solutions for
measuring trajectory accuracy. We are also interested in deter-
mining how finely we can discriminate one drone trajectory from
another. The drone show data always kept the drones far apart,
likely for safety reasons to avoid collisions, so we did not have the
opportunity to study this matter in more detail.
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