
Hardware-Sensitive Fairness in Heterogeneous Federated

Learning

ZAHIDUR TALUKDER, The University of Texas at Arlington, Arlington, United States

BINGQIAN LU, University of California Riverside, Riverside, United States

SHAOLEI REN, University of California Riverside, Riverside, United States

MOHAMMAD ATIQUL ISLAM, Computer Science and Engineering, The University of Texas at Ar-

lington, Arlington, United States

Federated learning (FL) is a promising technique for decentralized privacy-preserving Machine Learning (ML)

with a diverse pool of participating devices with varying device capabilities. However, existing approaches

to handle such heterogeneous environments do not consider “fairness” in model aggregation, resulting in

significant performance variation among devices. Meanwhile, prior works on FL fairness remain hardware-

oblivious and cannot be applied directly without severe performance penalties. To address this issue, we

propose a novel hardware-sensitive FL method called FairHetero that promotes fairness among heteroge-

neous federated clients. Our approach offers tunable fairness within a group of devices with the same ML

architecture as well as across different groups with heterogeneous models. Our evaluation under MNIST,

FEMNIST, CIFAR10, and SHAKESPEARE datasets demonstrates that FairHetero can reduce variance among par-

ticipating clients’ test loss compared to the existing state-of-the-art techniques, resulting in increased overall

performance.

CCS Concepts: • Security and privacy;

Additional Key Words and Phrases: Federated Learning, Fairness, Hardware, Privacy

ACM Reference Format:

Zahidur Talukder, Bingqian Lu, Shaolei Ren, and Mohammad Atiqul Islam. 2025. Hardware-Sensitive Fair-

ness in Heterogeneous Federated Learning. ACM Trans. Model. Perform. Eval. Comput. Syst. 10, 1, Article 5

(March 2025), 31 pages. https://doi.org/10.1145/3703627

1 Introduction

1.1 Motivation

In the wake of exploding user-generated data and the proliferation of Machine Learning (ML)

and AI in our everyday lives, federated learning (FL) has emerged as a promising technique for
distributed, collaborative, and privacy-preserving ML training across many devices. In FL, devices

Zahidur Talukder and Bingqian Lu contributed equally to this research.
Authors’ Contact Information: Zahidur Talukder, The University of Texas at Arlington, Arlington, Texas, United States; e-

mail: zahidurrahim.talukder@mavs.uta.edu; Bingqian Lu, University of California Riverside, Riverside, California, United

States; e-mail: blu029@ucr.edu; Shaolei Ren, University of California Riverside, Riverside, California, United States; e-mail:

shaolei@ucr.edu; Mohammad Atiqul Islam, Computer Science and Engineering, The University of Texas at Arlington,

Arlington, Texas, United States; e-mail: mislam@uta.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).

ACM 2376-3639/2025/03-ART5

https://doi.org/10.1145/3703627

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

HTTPS://ORCID.ORG/0000-0003-0930-3123
HTTPS://ORCID.ORG/0009-0002-6933-5135
HTTPS://ORCID.ORG/0000-0001-9003-4324
HTTPS://ORCID.ORG/0000-0002-5778-4366
https://doi.org/10.1145/3703627
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3703627
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3703627&domain=pdf&date_stamp=2025-03-12

5:2 Z. Talukder et al.

Fig. 1. The impact of imposing existing fairness approaches on FL clients with different hardware capabil-

ities. Without fairness constraints, the clients can adopt different model architectures, and the client with

the lowest architecture (G-5), where G-1 to G-5 represent decreasing model architecture sizes and limited

hardware capability, suffers from inferior performance due to its smaller model. With fairness constraints,

all clients are forced to adopt the smallest architecture, leading to severe performance degradation. Hence,

existing approaches for performance fairness result in hardware unfairness as clients with better hardware

do not perform better.

perform ML model training locally and send the model updates to a central server for aggregation
[15, 16, 28]. These early works on FL force all devices to adopt identical ML models (i.e., homo-
geneous model architecture) for local training, even when different participating devices have
different hardware capabilities. Meanwhile, in the pursuit of performance improvement, increas-
ingly complex and specialized ML models are being developed and deployed, pushing devices to
their computation limits [10, 31, 33]. With such progression in the ML model complexity, it has
become impractical to restrict FL to homogeneous model architecture, which is limited by the
weakest participating device. Consequently, new FL approaches are introduced, which allow de-
vices to undertake ML model complexities in line with their hardware capabilities [8, 9, 20, 39].
However, heterogeneous FL exacerbates the performance disparity among devices as the distribu-
tion of device-level data and the model updates may vary significantly among different devices,
leading to non-uniform performance among devices on the final trained model [13, 22, 23, 34–37].
These performance variations are undesirable as these “unfairly” advantage or disadvantage some
devices. Our goal in this article is to systematically rectify such performance bias and improve
FL “fairness.”

1.2 Limitations of Prior Works

Fairness in ML has garnered significant attention in recent years, with recent works in federated
settings trying to address the performance disparity among FL clients [11, 23, 27, 40]. However,
prior works suffer from two fundamental limitations. First, these approaches force every device
to have the same model architecture, leading to significant degradation of overall performance
due to the architecture bottleneck of the weakest hardware/device. We illustrate this in Figure 1
where imposing fairness (forcing the same model architecture for all) on heterogeneous devices
causes severe performance loss. Note here that while fairness constraints typically cause some
performance loss (mainly for clients with better performance without fairness), the performance
degradation in Figure 1 is mostly due to enforcing architecture homogeneity. Second, existing FL
fairness approaches typically focus on reducing the performance gap among clients by boost-
ing the performance of those who are lagging behind. This approach assumes that all clients
should achieve similar performance levels. However, in practical FL scenarios, it is expected that
clients with better hardware, capable of running more complex ML architectures, will naturally
outperform those with less capable devices [9]. While it is important to support weaker clients,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:3

prioritizing them exclusively can introduce fairness concerns for other clients who are better
equipped.

In our design, we do not aim for all clients to achieve the same or similar performance solely
due to their hardware capabilities. Instead, we strive to reduce the overall variance in performance
across clients, ensuring that disparities are minimized while acknowledging inherent hardware
differences. This approach moves beyond traditional FL fairness models, addressing the need for
“hardware-sensitive” fairness that better accommodates the diverse capabilities of clients in hetero-
geneous environments.

1.3 Our Contributions

In this article, we propose a novel hardware-sensitive framework, FairHetero, for FL with hetero-
geneous hardware and heterogeneous model architecture. The core of our solution is the separa-
tion of FL clients’ performance variation due to data heterogeneity and hardware heterogeneity.
FairHetero first divides participating devices into groups based on their hardware (and model ar-
chitecture) capabilities. It then applies a novel layered reweighting of the global objective function
to enforce performance fairness. Moreover, FairHetero allows tuning the degree of reweighting for
fairness—from no performance fairness to forcing every client to have uniform performance. At the
group level, FairHetero imposes performance fairness constraints among the members of the same
group, and we call it “intra-group fairness.” At the global level, FairHetero imposes performance
fairness constraints among different groups, and we call it “inter-group fairness.” The intra-group
reweighting tackles fairness due to data heterogeneity, and the inter-group reweighting tackles
fairness due to hardware heterogeneity. By separately handling the two types of performance het-
erogeneity, FairHetero allows a graceful and hardware-sensitive tradeoff between performance and
fairness among heterogeneous devices. Note here that FairHetero is not to be taken as a “naturally
fair” FL approach; rather, it should be taken as a federation mechanism that allows fairness tuning
at the data and hardware levels separately. Through this separation of fairness tuning, we can adopt
more mainstream data fairness (i.e., reducing performance gaps among FL clients with heteroge-
neous data) along with hardware fairness (i.e., allowing some performance gaps among FL clients
with heterogeneous model architecture). To the best of our knowledge, FairHetero algorithm is
the first attempt to address fairness in FL with devices/clients with hardware heterogeneity. Our
method ensures a more balanced performance among participating clients with different compu-
tational capabilities.

To evaluate FairHetero, we conduct a theoretical analysis to demonstrate that FairHetero re-
duces the performance variation of participating clients with different hardware capabilities. We
also run extensive FL simulations using four datasets, MNIST, CIFAR10, FEMNIST, and SHAKESPEARE,
under IID and Non-IID data distribution among FL clients. We analyze the impacts of our algo-
rithm’s design parameters on FL performance and fairness, demonstrating the tuning capability
offered by FairHetero. We compare our algorithm with state-of-the-art algorithms, showing that,
in most cases, our algorithm enhances fairness among participating clients while improving over-
all performance.

The remainder of this article is organized as follows: Section 2 provides an overview of related
works in the field of architectural heterogeneous FL and fairness-aware FL algorithms. Section 3
introduces the preliminaries and background concepts necessary to understand our approach. In
Section 4, we present the design of FairHetero and discuss its key components with theoretical
analysis, uniformity analysis, and generalization bound. Section 5 describes the evaluation settings,
including datasets, experimental setup, and performance metrics used to evaluate our algorithm. In
Section 6, we present the results of our experiments and compare FairHetero with state-of-the-art
algorithms. Finally, Section 7 concludes the article and discusses future research directions.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:4 Z. Talukder et al.

2 Related Work

In this section, we review existing literature related to addressing heterogeneous model ar-
chitecture and fairness in FL. We first discuss approaches that handle heterogeneous model
architectures, including partial training, personalization, and knowledge distillation techniques.
Subsequently, we explore methods that focus on achieving fairness in FL, highlighting their
strategies and limitations.

2.1 Heterogeneous Model Architecture

To address the heterogeneous computational power of local clients, various heterogeneous model
training for FL has been proposed. One line of work is based on partial training (PT) on differ-
ent clients based on the computation power. For example, in Federated Dropout [3] heterogeneous
model architecture is achieved by random dropout from the global model. In HeteroFL [9], a differ-
ent subset of the model is trained at local devices based on their hardware capability. Another work
FjORD [13] was introduced to tackle model heterogeneity by ordered dropout. FedRolex [1] takes
the heterogeneous model architecture on a rolling basis, which solves the uneven training of the
model parameters by the local dataset. Another type of work is based on the personalization model
for the clients. Like in FedMask [20], personalized models are proposed with heterogeneous mask-
ing. In contrast, in Dispfl [8], the personalized model is extracted based on decentralized sparse
training of the local clients. Besides, Fedhm [39] uses heterogeneous models via low-rank factor-
ization. Some other previous works utilize knowledge distillation. FedDF [25] trains the classifier
from the clients and uses a public dataset to further train the student model at the server. DSFL
[14] uses an unlabeled public dataset at the server to train the student model by distillation-based
semi-supervised learning. In FedET [4] a weighted distillation-based approach is proposed where
the server model is trained on top of a smaller model on the clients.

2.2 Fairness in Federated Learning

Most existing work in FL focuses on homogeneous setups, where all clients are assumed to have
similar hardware capabilities and model architectures. Fairness is a critical consideration in ma-
chine learning, and various methods have been developed to enhance fairness in FL, often tailored
to specific application contexts [7, 30, 38]. As FL evolves, it introduces new challenges and dif-
ferent notions of fairness. A common approach in prior work defines fairness as the reduction
of bias [6, 29], aiming to ensure that model outputs do not disproportionately favor or disadvan-
tage certain groups defined by sensitive attributes. Another line of work defines fairness in terms
of reducing performance variation caused by data heterogeneity. For instance, some approaches
address data heterogeneity by forming distinct groups and ensuring fairness at the group level
[11, 24]. Techniques like q-FFL [23] introduce a powered loss function with a parameter q before
model aggregation, while AFL [12] uses a value function on the client side to select clients for the
next iteration based on loss evaluations. Power-of-choice selection strategies [5] extend AFL by se-
lecting clients with higher losses for subsequent training phases. These methods primarily focus
on mitigating data heterogeneity among clients with homogeneous model architectures. Other
approaches, such as Ditto [21] and CFFL [26], seek to improve client performance and achieve
fairness through personalized models and collaborative learning.

In contrast, our work specifically addresses the performance disparities among clients resulting
from differences in hardware capabilities. We aim to minimize the overall performance variation
across clients by considering hardware heterogeneity as a crucial factor in achieving fairness. Ex-
isting methods do not explicitly address the challenges posed by hardware heterogeneity in FL,
which our approach seeks to address.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:5

3 Preliminaries

In this section, we provide an overview of the fundamental concepts related to our work. We start
by defining FL and its optimization objective. We then discuss FL in the context of heterogeneous
model architecture, where devices may have different computational capabilities and model sizes.
Finally, we introduce the concept of fairness in FL and define our notion of performance fairness,
which aims to ensure balanced performance across devices with varying hardware and data
characteristics.

3.1 Federated Learning

The goal of FL can be formulated as the following optimization problem:

minimize
θ

N∑
i=1

pi fi (θ), (1)

where N is the total number of devices while fi (θ) and pi > 0 are the local objective and weight
parameter of device i , respectively. The typical choice of local objective fi (θ) is the empirical risk

over the local dataset Di , i.e., fi (θ) = 1
|Di |
∑

(x,y)∈Di
l(θ ,x ,y). We can setpi =

|Di |∑
i |Di | to achieve the

minimum empirical risk over the entire data set across all devices. The solution of (1) in prior works
(particularly federated averaging or FedAVG) involves communication-efficient update, where a
subset of all devices apply stochastic gradient descent on their local dataset for multiple epochs
before sending it to the aggregation server [28].

3.2 FL with Heterogeneous Architecture

Instead of a homogeneously shared model, Reference [9] proposes to utilize heterogeneous models
where each device trains a model appropriate to its own device capability. The key idea here is that
weaker devices get a smaller model that can be nested within the centralized larger model.

Let us consider that N devices in FL are divided into M groups of devices, each group with
Nm members sharing the same model architecture. Groupsm’s model architecture, θm is extracted
from the centralized model asθ�Am , whereAm is a matrix with the same dimension asθ consisting
of only 0’s and 1’s, serving as a mask applied to the global model to obtain groupm’s local training
parameter θm . θm is a matrix of the same dimension as θ , with 0’s at positions outside of its desired
model architecture Am . Then for client i in group m, its loss function can be written as fm,i =

fi (θm) = fi (θ � Am).
We can update (1) as follows to incorporate the architecture heterogeneity:

minimize
θ

M∑
m=1

Nm∑
i=1

pm,i fm,i (θ � Am). (2)

We adopt the objective mentioned above for our design, utilizing the HeteroFL architecture
[9] to categorize FL clients based on hardware capabilities. During aggregation, we use regions
denoted byM(j) contributed by different subsets of model groups. Our objective can also be applied
to other PT-based algorithms, such as FedRolex [1], with slight modifications. It is important to
ensure that clients within the same group train the same subset of model parameters in each
training round.

3.3 Fairness

An FL system that solves (2) can introduce performance variation among devices due to their
heterogeneity in model architecture and data. For instance, the central model will be biased toward
devices with larger models and more data. Data creates performance variation among the devices

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:6 Z. Talukder et al.

in the same architecture group, and we call this intra-group performance variation. Meanwhile, the
architecture causes performance variation among different groups, and we call this inter-group
performance variation. In this work, we seek to improve overall “performance fairness” in FL with
heterogeneous architecture and define fairness as follows.

Definition 3.1 (Intra-group fairness- Data Fairness). For any hardware groupm withNm members
trained with model θm = (θ � Am) and θ

′
m = (θ ′ � Am), we call θm is more fair if

Var (fm,1(θm), . . . , fm,Nm
(θm)) < Var

(
fm,1

(
θ
′
m

)
, . . . , fm,Nm

(
θ
′
m

))
.

Definition 3.2 (Inter-group fairness- Hardware Fairness). For total M hardware groups trained
with global model θ and θ ′, we call θ is more fair if

Var

(
1

N1

N1∑
i=1

f1,i (θ1), . . . ,
1

NM

NM∑
i=1

fM,i (θM)
)
< Var

(
1

N1

N1∑
i=1

f1,i (θ ′1), . . . ,
1

NM

NM∑
i=1

fM,i (θ ′M)
)
,

where θm corresponds to the model architecture for group m.

Our definition of performance fairness is based on the uniformity of clients’ test loss on local
data. While we formalize fairness using variance, other uniformity metrics, such as the accuracy
distribution of clients and cosine similarity [23], can also used without any loss of generality of
our definition. Also, note that while we define inter-group fairness (Hardware Fairness) as having
less performance variation among different hardware groups, our goal is to allow separate tuning
capabilities to control the two types of fairness above. In the process, we become aware of hardware
capability differences (allowing better hardware to perform better) instead of imposing a blanket
performance fairness goal.

4 Hardware Sensitive Fairness: FairHetero

In this section, we provide a detailed explanation of FairHetero’s objective and solution, along
with theoretical analyses on its convergence, uniformity, and generalization bounds.

4.1 Objective of FairHetero

To impose the fairness condition on (2), we reweight the objective function to favor the devices
with higher loss by giving them higher weights. Our solution is inspired by α-fairness in wire-
less networks and q-fairness for FL with homogeneous architecture [18, 23]. More specifically, we
define the objective of our Fair FL with heterogeneous architecture (FairHetero) as

minimize
θ

Inter-Group Fairness︷��︸︸��︷
M∑

m=1

дm

q + 1

(Intra-Group Fairness︷���������������������������︸︸���������������������������︷
Nm∑
i=1

pm,i fm,i (θ � Am)qm+1
) q+1

qm+1
. (3)

Here q and qm are hyperparameters for tuning the inter-group and intra-group fairness, respec-
tively. дm is the group weight meeting the condition

∑
m дm = 1. We achieve both intra-group and

inter-group fairness in (3) by employing a layered weighting approach. The hyperparameter qm is
used to minimize variance in the losses among devices within a group m, which shares the archi-
tecture mask Am . By adjusting qm , we control intra-group fairness, with each group potentially
having a unique value of qm . To minimize variance across different groups, we use a global param-
eter q, which applies uniformly to all groups. In general, larger values of q and qm enforce stricter
fairness requirements. Figure 2 demonstrates the implementation of FairHetero. When there is

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:7

Fig. 2. The figure illustrates the architecture of a partial training-based heterogeneous setup in FL, where

clients are grouped based on their hardware capabilities to train subsets of a global model. Region M(1)

is shared across all client groups θ1, θ2, and θ3. Region M(2) is shared between groups θ1 and θ2, while

region M(j) is exclusive to group θ1. The FairHetero algorithm introduces parameters qm and q to ensure

fair performance both within and across these federated client groups.

only one group (i.e., M = 1), we set д1 to 1, q to 0, and remove the normalization term 1
qm+1 , since

there is no inter-group fairness, then the former formulation is equivalent as the formulation of
q-fairness [23].

Necessity of layered weighting. The model heterogeneity introduces additional performance
variance, and naively applying global fairness as in prior work will result in significant perfor-
mance degradation among devices with larger architecture and lower loss. By separating the per-
formance variance due to architecture (i.e., inter-group variance) from performance variance due
to data (i.e., intra-group variance), we allow a graceful implementation of fairness. Note that (3) is
a generalized version of FL fairness and, therefore, also applicable to homogeneous architecture
(i.e., M = 1).

Tuning hyperparametersq andqm . The impact of certain values ofq andqm on the FL clients’
performance distribution depends on the client datasets, loss function, and model architecture,
making it impossible to “directly determine” the values of q and qm for a certain level of fairness.
Hence, FairHetero requires hyperparameter tuning.

4.2 Solution of FairHetero

We adopt a communication-efficient FL approach where, in each iteration, a device i in group m
trains its masked model θ �Am . The device then sends its loss fm,i and gradient ∇θ fm,i �Am back
to the central server. In scenarios where the server cannot determine the clients’ capabilities or
group affiliations, it can send the global model directly to the client, allowing the client to select
a suitable subset of the model architecture. Our design imposes no restrictions on the number of
groups, so a group may consist of a single client. Additionally, our approach does not require a
coordinator for each group, unlike hierarchical designs.

The calculation of the group gradient and the norm of the group Hessian is essential for the
FairHetero algorithm due to the heterogeneous architectures in federated learning settings. These
calculations determine each group’s contribution to the global model update, ensuring that updates
from different groups are appropriately weighted based on their impact on the global model.

The calculation of group gradient and norm of group Hessian is necessary for the FairHetero

algorithm because of the heterogeneous architecture in federated learning settings. The group gra-
dient and norm of group Hessian are used to calculate the contribution of each group to the global

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:8 Z. Talukder et al.

model update. Specifically, the norm of the Hessian is crucial for estimating the local Lipschitz con-
stant of the gradient in FairHetero. More details are provided in Lemmas 1 and 2. This estimation
allows for dynamic adjustment of the step size in gradient-based optimization methods, ensuring
stable convergence without the need for manual tuning for each q and qm value. By providing an
upper bound on how much the gradient can change, the Hessian norm helps maintain efficiency
and balance between accuracy and fairness across different q and qm settings. This calculation
ensures that updates from different groups are appropriately weighted based on their impact on
the global model.

Calculation of group gradient (Δm). The group gradient regarding global model parameter
θ is as follows:

∇θ

⎧⎪⎪⎨⎪⎪⎩
дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1 ⎫⎪⎪⎬⎪⎪⎭
=

дm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1 Nm∑

i=1

pm,i (qm + 1)f qm

m,i ∇θ { fi (θ � Am)}

=
дm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1 Nm∑

i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

=Δm .

Calculation of norm of group Hessian (Hm). The Hessian regarding global model parameter
θ is as follows:

∇2
θ

⎧⎪⎪⎨⎪⎪⎩
дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1 ⎫⎪⎪⎬⎪⎪⎭
=∇θ

⎧⎪⎪⎨⎪⎪⎩
дm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1 Nm∑

i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

⎫⎪⎪⎬⎪⎪⎭
=

дm

qm + 1
∇θ

⎧⎪⎪⎨⎪⎪⎩
(

Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1 ⎫⎪⎪⎬⎪⎪⎭

Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

+
дm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1

∇θ

{
Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

}
.

(4)

For gradient in the first term, we have the following:

∇θ

⎧⎪⎪⎨⎪⎪⎩
(

Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1 ⎫⎪⎪⎬⎪⎪⎭

=
q − qm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−2qm−1
qm+1 Nm∑

i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am .

(5)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:9

For gradient in the second term, we have the following:

∇θ

{
Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

}
=

Nm∑
i=1

[
pm,i (qm + 1)qm f

qm−1
m,i (∇θ fm,i � Am)(∇θ fm,i � Am)T + pm,i (qm + 1)f qm

m,i ∇
2
θ fm,i � Am

]
.

(6)

Plug the two equations above into Equation (4) as follows:

∇2
θ

⎧⎪⎪⎨⎪⎪⎩
дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1 ⎫⎪⎪⎬⎪⎪⎭
=

дm

qm + 1

q − qm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−2qm−1
qm+1

(
Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

) (
Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

)T
+

дm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1

Nm∑
i=1

[
pm,i (qm + 1)qm f

qm−1
m,i (∇θ fm,i � Am)(∇θ fm,i � Am)T + pm,i (qm + 1)f qm

m,i ∇
2
θ fm,i � Am

]
.

(7)

For term (
∑Nm

i=1 pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am)(
∑Nm

i=1 pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am)T ,

(∇θ fm,i � Am)(∇θ fm,i � Am)T , and ∇2
θ
fm,i � Am terms in the Hessian above, we have the

following: (
Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

) (
Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

)T
≤

�����Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

�����2 × I

(8)

and

(∇θ fm,i � Am)(∇θ fm,i � Am)T ≤ ‖∇θ fm,i � Am ‖2 × I . (9)

Suppose the non-negative function f (·) has a Lipschitz gradient with constant L,

∇2
θ fm,i � Am ≤ L × I . (10)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:10 Z. Talukder et al.

Plugging the three inequalities above into Equation (7), we have the following:

∇2
θ

⎧⎪⎪⎨⎪⎪⎩
дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1 ⎫⎪⎪⎬⎪⎪⎭
≤ дm

qm + 1

q − qm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−2qm−1
qm+1

�����Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

�����2 × I

+
дm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1

Nm∑
i=1

[
pm,i (qm + 1)qm f

qm−1
m,i ‖∇θ fm,i � Am ‖2 × I + pm,i (qm + 1)f qm

m,i L × I
]
.

(11)

Therefore, the norm of the group Hessian (Hm) can be written as follows:�������∇2
θ

⎧⎪⎪⎨⎪⎪⎩
дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1 ⎫⎪⎪⎬⎪⎪⎭
�������

≤ дm

qm + 1

q − qm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−2qm−1
qm+1

�����Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

�����2
+

дm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1

Nm∑
i=1

[
pm,i (qm + 1)qm f

qm−1
m,i ‖∇θ fm,i � Am ‖2 + pm,i (qm + 1)f qm

m,i L
]

=Hm .

(12)

Adjusting the learning rate A critical concern in tuning hyperparameters q and qm is the
adjustment of the learning rate γ for each pair value. This adjustment becomes particularly chal-
lenging for gradient-based methods, where the step size is inversely proportional to the Lipschitz
constant of the function’s gradient. Changing the values of q and qm can lead to significant fluctu-
ations in the step size, potentially causing training instability or divergence.

To address this issue, we propose estimating the local Lipschitz constant for FairHetero’s objec-
tive by tuning the step size on just one value of q and qm (e.g., q = 0 and qm = 0). This approach
allows us to dynamically adjust the step size for our gradient-based optimization method without
the need for manual tuning of q and qm . The norm of the Hessian is used to estimate the local and
global Lipschitz constant of the gradient, which in turn helps in determining an appropriate step
size for gradient-based optimization methods when solving FairHetero objectives.

Lemma 1 (Upper Bound for Group Level Hessians). If the non-negative function f (·) has a
Lipschitz gradient with constant L, then for any qm ≥ 0 and any point θ ,���∇2

θ

{
pm,i f

qm+1
i (θ � Am)

}��� ≤ pm,i (qm + 1)qm f
qm−1

m,i ‖∇θ fm,i � Am ‖2 + pm,i (qm + 1)f qm

m,i L =Lдp ,

(13)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:11

is an upper bound for the local Lipschitz constant of the gradient of pm,i f
qm+1

i (θ � Am) at point θ .
Refer to the Appendix in supplementary materials for the complete proof of Lemma 1.

Lemma 2 (Upper Bound for Global Level Hessians). If the non-negative function F (·) has a
Lipschitz gradient with constant L, then for any q ≥ 0 and any point θ ,

‖∇2
θ

⎧⎪⎪⎨⎪⎪⎩
дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1 ⎫⎪⎪⎬⎪⎪⎭‖
≤ дm

qm + 1

q − qm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−2qm−1
qm+1

�����Nm∑
i=1

pm,i (qm + 1)f qm

m,i ∇θ fm,i � Am

�����2
+

дm

qm + 1

(
Nm∑
i=1

pm,i f
qm+1

m,i

) q−qm
qm+1

Nm∑
i=1

[
pm,i (qm + 1)qm f

qm−1
m,i ‖∇θ fm,i � Am ‖2 + pm,i (qm + 1)f qm

m,i L
]

=LG

(14)

is an upper bound for the group Lipschitz constant of the gradient of

дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1

at point θ . Refer to the Appendix in supplementary materials for the complete proof of Lemma 2.

Remark 1. Fairness-performance tradeoff. Increasing the value of q enhances the perfor-
mance of smaller architecture clients. However, if q approaches +∞, then it transforms into a
max-min problem [32], favoring smaller architectures most at the expense of larger ones. Striking
a balance is crucial, aiming for a slight decline in larger architecture performance to significantly
boost smaller architecture clients, ensuring an overall improved average performance across all
participants. Our experiments in Section 5 demonstrate that a lower q achieves greater uniformity
among heterogeneous architecture clients.

Model aggregation. Due to heterogeneous architecture, we aggregate the models by dividing
the global model θ into non-overlapping regions, which have an equal number of devices con-
tributing to model updates. For instance, in Figure 2, we have three regions in the global model
θ : the green region gets model updates from all devices, the blue region gets model updates from
devices with architecture θ1 and θ2, and the light-red region gets updates from only devices with
θ1 architecture.

Let us consider there are J regions in the global model. We denote all the groups that contain
region j’s parameter (non-zero value in Am) as set M(j). For a groupm ∈ M(j), its contribution to

global model update is
Δ(j)

m∑
m∈M(j) H

(j)
m

, where Δ(j)
m and H (j)

m denote the part of Δm or Hm that belongs

to region j. Finally, the global server updates the model parameter as

θr+1 = θr −
∑

m∈M(j) Δ(j)
m∑

m∈M(j) H
(j)
m

. (15)

Our solution to (3), FairHetero, is summarized in Algorithm 1.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:12 Z. Talukder et al.

ALGORITHM 1: FairHetero

1: Input: Global model θ , group mask Am , number of FL iterations R, and learning rate γ
2: Output: Optimal architecture and weight θ ∗ for each group
3: Initialization: Initial model parameter θ0

4: for each federated learning round r = 1, . . . ,R do

5: Server sends global model parameter θ to all clients
6: for each group m = 1, . . . ,M in parallel do

7: Get the desired local model architecture Am

8: for each client i = 1, . . . ,Nm in group m in parallel do

9: Local trainable model parameter: θm = θ � Am

10: Client local update:

11: for each local epoch t = 1, . . . ,T do

12: θm,t = θm,t−1 − γ∇θ fm,i,t−1

13: end for

14: Local parameter update after T epochs: ∇θ fm,i � Am = L(θm − θm,T)
15: Each client sends loss fm,i and gradient ∇θ fm,i � Am to the central server
16: end for

17: end for

18: Server global aggregation:

19: for each region j = 1, . . . , J do

20: Server updates θr+1 = θr −
∑

m∈M(j) Δ(j)
m∑

m∈M(j) H
(j)
m

21: end for

22: end for

4.3 Theoretical Analysis of FairHetero

In this section, we provide convergence analysis, generalization bound, and uniformity analysis
for FairHetero. For detailed theoretical analysis and proof of theorems and lemmas, refer to the
Appendix in supplementary materials.

Assumption 1 (Smoothness). Loss functions f1, . . . , fN are all L-smooth: ∀θ ,ϕ ∈ Rd and any
client i from groupm, we assume that there exists L > 0:

‖∇θ fi (θm) − ∇ϕ fi (ϕm)‖ = ‖∇θ fi (θ � Am) − ∇ϕ fi (ϕ � Am)‖ ≤ L‖θ � Am − ϕ � Am ‖.

Assumption 2 (Architecture Slicing-induced Noise). We assume that for some δ ∈ [0, 1) and
any round r , groupm with desired architecture Am , the architecture slicing-induced noise is bounded
by:

‖θ − θ � Am ‖2 ≤ δ 2‖θ ‖2,

where θ denotes the global model parameters in round r , and Am is the desired model architecture for
clients in groupm.

Assumption 3 (Bounded Gradient). The expected squared norm of stochastic gradients is
bounded uniformly, i.e., for constant G > 0 and any round r , client i from group m, and its local
training epoch t :

E‖∇θ fi (θm , ξm,i,t)‖2 ≤ G,

where ξm,i,t is the local training dataset for client i used in local training epoch t and θm is the
trainable model parameter for groupm: θm = θ � Am .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:13

Assumption 4 (Gradient Noise for IID Data). Under IID data distribution. for any round r ,
client i from groupm and its local training epoch t , we assume that

E‖∇θ fi (θm , ξm,i,t)‖ = ∇θ F (θm)
E‖∇θ fi (θm , ξm,i,t) − ∇θ F (θm)‖2 ≤ σ 2

for constant σ > 0 and independent samples ξm,i,t .

4.3.1 Convergence Analysis. For the convergence analysis, we show that the sum of the squared
norm of the gradient of the global loss ∇θ F (θ) converges over R federated learning rounds. Specif-
ically, in our formulation,

F (θ) =
M∑

m=1

дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1

. (16)

Theorem 4.1. Under the Assumptions stated above, for a learning rate γ and R as total number of

federated learning rounds and T as local training epochs, the upper bound for 1
R

∑R
r=1 E| |∇θ F (θ)| |2,

where F (·) is the global loss satisfies

1

R

R∑
r=1

E| |�F (θr)| |2 ≤ 1
√
RT
E[F (θ0)] +

(
L2σ 2N

2RT Γ∗
min

+
3L3σ 2N

2RT Γ∗
min

)
+

R∑
r=1

E| |θr | |2

+
L2NG

2RΓ∗
min

+
3LNσ 2

2T Γ∗
min

+
3L3γ

√
TNG

2
√
RΓ∗

min

,

where Γ∗
min is a composite coefficient with denominator |M(j) |min . For detailed proof refer to the

Appendix in supplementary materials.

This effectively demonstrates the convergence of our objective function after conductingR feder-
ated rounds. As mentioned earlier, FairHetero extends prior work in federated learning by offering
a flexible tradeoff between performance and fairness through the parameterization of q and qm .

4.3.2 Generalization bound for FairHetero. In this section, we first describe the setup of
FairHetero in more details and then provide the generalization bound. One benefit of FairHetero

is that it allows a flexible tradeoff between fairness and performance that generalizes to q-fairness
(a special case when M = 1, we set д1 to 1, q to 0, and remove the normalization term 1

qm+1). The

generalization bound for FairHetero provides insights into its performance in federated learning
scenarios with heterogeneous groups. The bound ensures that the empirical loss of the model,
compared to its true loss, remains within a certain range with high probability.

Group level generalization:

Total loss of groupm with unknown loss of each devices,

Lλm
(θ) =

Nm∑
i=1

λm,iE(x,y)∼Dm,i
l(θm , (x ,y)), (17)

where λm is in a probability simplex Λm , Nm is the total number of clients in group m, Dm,i is
the local data distribution for client i from groupm, θm is the local model parameter for clients in

group m, and l is the loss. We use L̂λm
as empirical loss,

L̂λm
(θ) =

Nm∑
i=1

λm,i

ni

ni∑
j=1

l(θm , (xi, j ,yi, j)), (18)

where ni is the number of local data samples of client i from group m and (xi, j ,yi, j) ∼ Dm,i .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:14 Z. Talukder et al.

The objective of groupm is

min
θm

Nm∑
i=1

pm,i f
qm+1

m,i ; (19)

consider an unweighted version of minθm

∑Nm

i=1 f
qm+1

m,i , which is equivalent to minimizing the em-
pirical loss

L̃qm
(θ) = max

νm, ‖νm ‖pm ≤1

Nm∑
i=1

νm,i

ni

ni∑
j=1

l(θm , (xi, j ,yi, j)), (20)

where 1
pm
+ 1

qm+1 = 1 (pm ≥ 1, qm ≥ 0).

Lemma 3 (Generalization Bound for a Specific λm). Assume that the loss l is bounded byQ >
0 and the numbers of local samples are (n1, . . . ,nNm

). Then for any δ > 0, the following inequality
holds with probability at least 1-σ for any λm ∈ Λm , θ ∈ Θ:

Lλm
(θ) ≤ Aqm

(λm)L̃qm
(θ) + E[max

θ ∈Θ
Lλm

(θ) − L̂λm
(θ)] +Q

√√√
Nm∑
i=1

λ2
m,i

2ni
log

1

δ
, (21)

where Aqm
(λm) = ‖λm ‖pm

and 1
pm
+ 1

qm+1 = 1.

Refer to the Appendix in supplementary materials for the complete proof of Lemma 3.

Generalization bound for any λm . Assume that the loss l is bounded by Q > 0 and the
numbers of local samples are (n1, . . . ,nNm

). Then for any δ > 0, the following inequality holds
with probability at least 1-σ for any λm ∈ Λm , θ ∈ Θ:

Lλm
(θ) ≤ max

λm ∈Λm

(Aqm
(λm))L̃qm

(θ) + max
λm ∈Λm

(
E[max

θ ∈Θ
Lλm

(θ) − L̂λm
(θ)] +Q

√√√
Nm∑
i=1

λ2
m,i

2ni
log

1

δ

)
, (22)

where Aqm
(λm) = ‖λm ‖pm

, and 1
pm
+ 1

qm+1 = 1.

Key takeaways. For a given λm ∈ Λm , the bound ensures that the model’s empirical loss is
constrained by a combination of the weighted empirical loss and a term related to the distribu-
tion of local samples. This result highlights FairHetero’s effectiveness in controlling the influence
of each group’s contribution to the overall loss, promoting fairness and balanced learning across
different groups. Furthermore, for any λm ∈ Λm , the bound provides a broader guarantee by con-
sidering the maximum weighted empirical loss across all possible λm . This reinforces FairHetero’s
capacity to adapt to varying group characteristics, maintaining both fairness and performance in
heterogeneous environments.

Global level generalization:

Total loss of all M groups (treat each group as a “client”) with unknown loss of each groups,

Lλ(θ) =
M∑

m=1

λmE(x,y)∼Dm
l(θm , (x ,y)), (23)

where λ is in a probability simplex Λ, M is the total number of groups, Dm is the local data dis-
tribution for group m, θm is the local model parameter for group m, and l is the loss. We define

empirical loss L̂λ(θ) as

L̂λ(θ) =
M∑

m=1

λm

nm

nm∑
j=1

l(θm , (xm, j ,ym, j)), (24)

where nm is the number of local data samples of groupm and (xm, j ,ym, j) ∼ Dm .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:15

The objective of federated learning over m groups is as follows:

min
θ

M∑
m=1

дm

q + 1

(
Nm∑
i=1

pm,i f
qm+1

i (θ � Am)
) q+1

qm+1

= min
θ

M∑
m=1

дm

q + 1
F

q+1
qm+1

m =min
θ

M∑
m=1

дm

q + 1
F

′q+1

m ,

(25)

consider an unweighted version of minθ

∑M
m=1 F

′q+1

m , which is equivalent to minimizing the empir-
ical loss,

L̃q(θ) = max
ν, ‖ν ‖p ≤1

M∑
m=1

νm

nm

nm∑
j=1

l(θm , (xm, j ,ym, j)), (26)

where 1
p
+ 1

q+1 = 1 (p ≥ 1, q ≥ 0).

Lemma 4 (Generalization Bound for a Specific λ). Assume that the loss l is bounded byQдp >
0 and the numbers of local samples are (n1, . . . ,nM). Then for any δ > 0, the following inequality
holds with probability at least 1-σ for any λ ∈ Λ, θ ∈ Θ:

Lλ(θ) ≤ Aq(λ)L̃q(θ) + E[max
θ ∈Θ

Lλ(θ) − L̂λ(θ)] +Qдp

√√√
M∑

m=1

λ2
m

2nm
log

1

δ
, (27)

where where Aq(λ) = ‖λ‖p , and 1
p
+ 1

q+1 = 1.

Refer to the Appendix in the supplementary materials for the complete proof of Lemma 4.

Generalization bound for any λ. Assume that the loss l is bounded by Qдp > 0 and the
numbers of local samples are (n1, . . . ,nM). Then for any δ > 0, the following inequality holds
with probability at least 1-σ for any λ ∈ Λ, θ ∈ Θ:

Lλ(θ) ≤ max
λ∈Λ

(Aq(λ))L̃q(θ) +max
λ∈Λ

(
E[max

θ ∈Θ
Lλ(θ) − L̂λ(θ)] +Qдp

√√√
M∑

m=1

λ2
m

2nm
log

1

δ

)
, (28)

where Aq(λ) = ‖λ‖p , and 1
p
+ 1

q+1 = 1.

Key takeaways. The analysis extends to the global level by considering each group as a “client”
in FL. The generalization bound on the total loss across all groups highlights FairHetero’s effec-
tiveness in achieving fair and accurate models, even in the presence of diverse data distributions
and varying group sizes.

In summary, the generalization bound for FairHetero highlights its ability to generalize well
to unseen data while maintaining fairness and performance in federated learning settings with
heterogeneous groups.

4.3.3 Uniformity Induced by FairHetero. In this section, we analyze the uniformity induced
by FairHetero in both inter-group and intra-group contexts, as established by the convergence
analysis. FairHetero can encourage more fair solution in terms of the entropy of the accuracy
distribution (larger entropy). We begin by formally defining the notion of fairness in terms of
entropy.

Definition 4.2 (Intra-group: Entropy of Performance Distribution). We say that the performance
distribution for any hardware group m with Nm members {(fm,1(θm), · · · , fm,Nm

(θm))} is more

uniform under model parameter θ than θ
′

if

H̃ (f (θ)) ≥ H̃ (f (θ ′)), (29)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:16 Z. Talukder et al.

where H̃ (f (θ)) is the entropy of the stochastic vector obtained by normalizing
{(fm,1(θm), . . . , fm,Nm

(θm))}, defined as

H̃ (f (θ)) � −
Nm∑
i=1

fm,i (θm)∑Nm

i=1 fm,i (θm)
ln

(
fm,i (θm)∑Nm

i=1 fm,i (θm)

)
. (30)

Definition 4.3 (Inter-group: Entropy of Performance Distribution). For total M hardware groups
{(F1(θ1), · · · , Fm(θm))} trained with global model θ and θ ′, we call θ is more fair if

H̃ (F (θ)) ≥ H̃ (F (θ ′)), (31)

where H̃ (f (θ)) is the entropy of the stochastic vector obtained by normalizing
{(F1(θ1), . . . , Fm(θm))}, defined as follows:

H̃ (F (θ)) � −
M∑

m=1

Fm(θm)∑M
m=1 Fm(θm)

ln

(
Fm(θm)∑M

m=1 Fm(θm)

)
. (32)

We next provide results based on Definitions 4.2 and 4.3. It states that for arbitrary q ≥ 0 and
qm ≥ 0, by increasing q and qm slightly, we can achieve more uniform performance distributions
defined over higher orders of performance for both inter- and intra-group clients.

Inter-group uniformity. The objective function of FairHetero promotes inter-group unifor-
mity, ensuring that each group’s contribution to the overall loss is balanced. Mathematically, the
unweighted version of the objective function can be expressed as

F (θ) = 1

M

M∑
m=1

(
1

Nm

Nm∑
i=1

f
qm+1

m,i

) q+1
qm+1

=
1

M

M∑
m=1

F
q+1

qm+1

m (θm), (33)

where Fm(θm) is the sum of loss of groupm: Fm(θm) = 1
Nm

∑Nm

i=1 f
qm+1

m,i .

Lemma 5. Let F (θ) be twice differentiable in θ with ∇2F (θ) > 0 (positve definite). The derivative

of H̃ (F
q+1

qm+1 (θ ∗q))|q=p with respect to the variable q evaluated at the point q = p is non-negative, i.e.,

∂

∂q
H̃
(
F

p+1
qm+1 (θ ∗q)

)
|q=p ≥ 0, (34)

where

H̃ (F (θ)) � −
M∑

m=1

Fm(θm)∑M
m=1 Fm(θm)

ln

(
Fm(θm)∑M

m=1 Fm(θm)

)

H̃
(
F

q+1
qm+1 (θ ∗q)

)
� −

M∑
m=1

F
q+1

qm+1

m (θ ∗m,q)∑M
m=1 F

q+1
qm+1

m (θ ∗m,q)
ln
"##$

F
q+1

qm+1

m (θ ∗m,q)∑M
m=1 F

q+1
qm+1

m (θ ∗m,q)

%&&'.
(35)

A complete proof of the Lemma 5 is provided in the Appendix in the supplementary materials.

where Fm(θm) represents the loss of group m. The corresponding entropy term, H̃ (F
q+1

qm+1 (θ ∗q)), en-

sures that the distribution of losses across groups remains balanced. The proof shows that the deriv-
ative of this term with respect to q at q = p is non-negative, indicating that the objective promotes
inter-group uniformity.

Intra-group uniformity. Similarly, FairHetero encourages intra-group uniformity by ensuring
that each sample within a group contributes equally to the group’s loss. The objective function for

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:17

Table 1. Dataset Description and Number of Clients for Different Datasets

Dataset Training Test Clients Number Distribution Model

MNIST [19] 60,000 10,000 100 IID/Non-IID MLP

CIFAR10 [17] 50,000 10,000 100 IID/Non-IID CNN

FEMNIST [2] 341,873 40,832 3,383 Non-IID MLP

SHAKESPEARE [2] 16,068 2,356 715 Non-IID RNN

each groupm is as follows:

Fm(θm) = 1

Nm

Nm∑
i=1

f
qm+1

m,i . (36)

Lemma 6. Let Fm(θm) be twice differentiable in θm with ∇2Fm(θ) > 0 (positve definite). The de-

rivative of H̃ (f qm+1(θ ∗qm
))|qm=pm

with respect to the variable qm evaluated at the point qm = pm is
non-negative, i.e.,

∂

∂q
H̃
(
f qm+1(θ ∗qm

)
)
|qm=pm

≥ 0, (37)

where

H̃ (f (θ)) � −
Nm∑
i=1

fm,i (θm)∑Nm

i=1 fm,i (θm)
ln

(
fm,i (θm)∑Nm

i=1 fm,i (θm)

)
H̃
(
f qm+1(θ ∗qm

)
)
� −

Nm∑
i=1

f
qm+1

m,i (θ ∗m,qm
)∑Nm

i=1 f
qm+1

m,i (θ ∗m,qm
)

ln

(
f

qm+1
m,i (θ ∗m,qm

)∑Nm

i=1 f
qm+1

m,i (θ ∗m,qm
)

)
.

(38)

A complete proof of the Lemma 6 is provided in the Appendix in the supplementary materials.

The corresponding entropy term, H̃ (f qm+1(θ ∗qm
)), guarantees that the loss distribution within

each group remains balanced. The proof establishes that the derivative of this term with respect
to qm at qm = pm is non-negative, demonstrating the promotion of intra-group uniformity.

Algorithmic uniformity. The algorithmic design of FairHetero ensures uniformity in both
inter-group and intra-group contexts. By iteratively updating the model parameters to minimize
the objective function while preserving the fairness constraints, FairHetero effectively balances
the contributions of different groups and samples, thereby promoting uniformity in the federated
learning process.

Overall, the uniformity induced by FairHetero plays a crucial role in ensuring fair and balanced
federated learning across diverse and heterogeneous groups. A complete proof is provided in the
Appendix in supplementary materials.

5 Evaluation Setup

This section discusses the experimental setup used to evaluate the performance of our algorithm.
We first describe the datasets used and then detail the model parameters for each dataset, including
the architectural diversity introduced to simulate different hardware capabilities among participat-
ing clients.

5.1 Dataset

We adopt four popular datasets MNIST, CIFAR10, FEMNIST, and SHAKESPEARE which are commonly
used in literature [28].
MNIST: This dataset is well known for handwriting recognition and includes 70,000 grayscale

images measuring 28×28 pixels. The dataset is split into 60,000 training samples and 10,000 test

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:18 Z. Talukder et al.

samples. There are 10 different classes for the images, ranging from 0 to 9. We adopt three cases
for MNIST data distribution for the clients i.e., IID, Non-IID, and Non-IID extreme. We distribute
the training dataset evenly among 100 clients, with each client receiving 600 samples for IID cases.
For the Non-IID cases we have one dominant class for each client having 80% of data and all other
classes have the rest 20% data. Finally, for the Non-IID extreme cases, each class would have at
most two classes of data. We also separate 10% of the client data for testing the model. The actual
test set is also used to test the global performance of the model over time.
CIFAR10: Another popular dataset, CIFAR10 includes 60,000 colored images measuring 32x32

pixels. The dataset is divided into 50,000 training images and 10,000 test images, grouped into
ten separate classes. Like the MNIST dataset, we have three types of data distribution for CIFAR10
i.e., IID, Non-IID, and Non-IID extreme. we adopt We divide the dataset into 100 clients, with
each client receiving 500 samples for the IID cases. Similarly, for the Non-IID cases we have one
dominant class for each client having 80% of data and all other classes have the rest 20% data.
Finally, for the Non-IID extreme cases, each class would have at most two classes of data. We also
separate 10% of the client’s data for the test of the model performance.
FEMNIST: The FEMNIST dataset, derived from the LEAF dataset and implemented in TensorFlow

Federated, is divided among 3,383 unique users (we used the first 1000 users). It consists of 341,873
training examples and 40,832 test examples, featuring grayscale images measuring 28×28 pixels.
The test set ensures representation from each user, creating a Non-IID (non-independent and iden-
tically distributed) and heterogeneous dataset. Each user represents a distinct client in this context.
The test set from the distinct client ID is used for testing the model performance over time.

SHAKESPEARE: The SHAKESPEARE dataset is derived from The Complete Works of William
Shakespeare. It utilizes the concept of speaking roles in plays to represent individual clients. The
dataset comprises 715 genuine users (we used 71 clients with at least 60 test data points), with
16,068 training examples and 2,356 test examples in textual format. Similarly to FEMNIST, the test
set includes at least one sample from each user. This dataset is also Non-IID and heterogeneous,
with each user corresponding to a different client.

5.2 Model Parameters

We focus on an edge computing setup where our clients are IoT devices. Given the limited power
and computational capacity of IoT devices, we opted for simpler, lightweight models. Instead of
using actual hardware, we emulated the setup, creating different groups of clients to mimic varying
hardware capabilities. The model parameters used in our training are detailed below.
MNIST: For the MNIST dataset, we employ a basic multi-layer perceptron (MLP) classifier us-

ing TensorFlow’s Keras sequential model. The MLP has two hidden layers with ReLU activation,
comprising 200 and 100 neurons, respectively, followed by an output layer with 10 neurons and
softmax activation. Before training, the input features are flattened, and the labels are one-hot en-
coded. We utilize the Adam optimizer with a learning rate of 0.001 for IID and 0.00012 for Non-IID
and extreme cases and categorical cross-entropy as the loss function. Training is conducted for
300 epochs across various scenarios, including IId, Non-IID, and extreme cases. To create architec-
tural diversity, we prune the global model into five distinct groups, denoted as Group 1 to Group
5, each with different performance levels. Each group is composed of 20 clients with a subset of
the model’s parameters. Specifically, Group 1 retains 100% of the global model, Group 2 retains
70%, Group 3 retains 50%, Group 4 retains 25%, and Group 5 retains 12%. These groups represent
different hardware capabilities among participating clients. The model parameters for each group
in the MNIST dataset are detailed in Table 2.
CIFAR10: For the CIFAR10 dataset, we employ a straightforward Convolutional Neural Net-

work (CNN) classifier using TensorFlow’s Keras. The CNN architecture comprises two sets of

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:19

Table 2. Number of Model Parameters for Different Model Architecture Groups (G-1 to G-5) for Different

Datasets

Dataset Learning Rate Epochs
Number of Model Parameters (% of Global Model)

G-1 G-2 G-3 G-4 G-5

MNIST [19] 0.001 300 178,110 (100) 120,480 (70) 84,060 (50) 40,785 (25) 20,067 (12)

CIFAR10 [17] 5e-5 2,000 1,060,138 (100) 596,770 (75) 265,626 (50) 125,806 (35) 66,706 (25)

FEMNIST [2] 0.001 600 50,890 (100) 34,990 (70) 22,270 (45) 12,730 (25) 6,370 (12)

SHAKESPEARE [2] 0.001 400 4,048,470 (100) 2,452,054 (75) 1,248,854 (50) 714,474 (35) 438,870 (25)

convolutional layers, followed by a max-pooling layer, a dropout layer, and two fully connected
layers with dropout regularization. ReLU is used as the activation function for the convolutional
layers, while softmax is applied to the output layer. We utilize the “categorical-crossentropy” loss
function, along with the Adam optimizer set to a learning rate of 0.001 for IID, and 0.00005 for
Non-IID and extreme scenarios. The model is trained for 1,000 epochs for IID, and 2,000 epochs
for Non-IID and extreme cases. To introduce architectural diversity, we vary the rate parameter in
the model, which controls the number of neurons in the fully connected layers, resulting in five
distinct architectures. Similarly to the MNIST setup, we create five architectural groups, each con-
sisting of 20 clients. In this setup, Group 1 retains 100% of the model parameters, Group 2 retains
75%, Group 3 retains 50%, Group 4 retains 35%, and Group 5 retains 25%. These groups are designed
to mimic different hardware capabilities among the participating clients. The model parameters
for each architectural group for the CIFAR10 dataset are detailed in Table 2.
FEMNIST: For the FEMNIST dataset, we employ a simple MLP with two hidden layers, using

fully connected dense layers with ReLU activation functions. The input shape of the model is 784,
corresponding to the number of pixels in each image. The first hidden layer consists of 64 neurons,
and the output layer contains 10 neurons without an activation function (as the loss function
used is SparseCategoricalCrossentropy with from-logits=True). The optimization process uses a
learning rate of 0.001, without any regularization techniques applied. Training is conducted for 600
epochs to ensure convergence. To introduce architectural diversity, we prune the global model to
create five distinct architectures with varying performances. Each group consists of 200 clients.
Similarly to the setups for other datasets, Group 1 retains 100% of the model parameters, Group 2
retains 70%, Group 3 retains 45%, Group 4 retains 25%, and Group 5 retains 12%. These groups are
designed to simulate different hardware capabilities among the participating clients. The model
parameters for each group for the FEMNIST dataset are provided in Table 2.

SHAKESPEARE: For the SHAKESPEARE dataset, we implement a Recurrent Neural Network

(RNN) using a GRU layer with stateful=True, ensuring the model’s state is maintained across
batches. Input data is pre-processed using a lookup table that maps each ASCII character to an in-
dex, then segmented into sequences of length 50+1. The model includes an embedding layer with a
batch input shape of [8,None], followed by a GRU layer, and concludes with a dense layer contain-
ing 86 output units. Training spans 400 epochs, with a custom function serving as the evaluation
metric, measuring the accuracy of the model’s predictions across all characters in the input se-
quence. To introduce architectural diversity, we create five groups with 30 clients in each. Group 1
retains 100% of the model’s parameters, Group 2 retains 75%, Group 3 retains 50%, Group 4 retains
35%, and Group 5 retains 25%. These groups simulate varying hardware capabilities among the
clients. The model parameters for each group for the SHAKESPEARE dataset are outlined in Table 2.

Our FairHetero approach is scalable with respect to the number of groups, as adding more
groups does not increase computational overhead. By using client masking, it accommodates
various model architectures efficiently. Additionally, FairHetero is adaptable to more advanced
architectures as federated learning systems evolve. It remains effective for a range of models,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:20 Z. Talukder et al.

including deep CNNs, RNNs, and transformers, through architecture-specific adjustments like
layerwise or attention-head pruning. This flexibility ensures that FairHetero can handle increased
complexity and continue to minimize performance disparities even as model architectures become
more sophisticated.

6 Results

In this section, we present the results of our experiments evaluating the performance of FairHetero.
In the figure, G-1 corresponds to clients with the highest trainable model parameters, and G-5
corresponds to the lowest, in decreasing order, with the OVERALL column representing the per-
formance of all clients together. We begin by analyzing the effect of the design parameter qm on
intra-group or data fairness, followed by the impact of q on inter-group or hardware fairness. We
then discuss the overall performance of FairHetero across different datasets. Finally, we provide
tabulated results for various datasets, showcasing the group-level variances and means for differ-
ent values of q and qm .

6.1 Effect of qm :- Intra-Group/Data Fairness

In our evaluation, we investigate the impact of the intra-group or data fairness metric (qm) on pro-
moting fairness among clients within groups (similar hardware or same model architecture) for
data heterogeneity. We maintain the inter-group or hardware fairness metric, q = 0, and vary the
qm value from 0 to 100 on the MNIST, CIFAR10, FEMNIST, and SHAKESPEARE datasets. The dataset
consists of five groups based on Table 2, each representing different hardware characteristics. In
our analysis, we keep qm the same for all groups, i.e., for example, if qm is set to 10, then it means
that all groups have a qm value of 10. Our findings found that increasing the qm value reduces the
variance within each group, as shown in Figure 3. However, there is a tradeoff between fairness
and performance. With increasing qm , we see a slight degradation of overall average performance.
Notably, the client-level qm metric cannot capture variance caused by architectural differences
among client groups, leading to persistent performance disparities between groups due to hard-
ware heterogeneity. Therefore, while the group-level qm metric effectively reduces performance
variance among clients within the same architectural groups due to data heterogeneity, it is unable
to address hardware heterogeneity among different hardware groups.

Key takeaways. Increasing the intra-group/data fairness parameter (qm) reduces variance
within groups but results in a slight degradation of overall average performance, highlighting
a tradeoff between fairness and performance, particularly in addressing data heterogeneity within
groups. It is unable to address performance variation due to hardware heterogeneity.

6.2 Effect of q:- Inter-group/Hardware Fairness

To assess the impact of the inter-group or hardware fairness metric (q) on reducing variance among
groups with architectural heterogeneity, we conducted experiments using the MNIST, CIFAR10, and
FEMNIST datasets. Five distinct groups were formed based on Table 2, each representing different
hardware characteristics. By setting the intra-group or data fairness metric (qm) to 0, we varied
the value of q from 0 to 500 for different datasets. Our findings reveal that increasing the value of q
enhances model fairness by reducing variance among participating groups, particularly benefiting
lower architectural client groups by improving their performance and reducing test loss leading
to min-max problems.

Interestingly, we observed a trend where increasing the value of q up to a certain point leads
to minimal degradation of larger architectural clients while improving the performance of smaller
architectural clients, resulting in both fairer and improved performance. However, beyond a cer-
tain threshold, further increases in q can lead to divergence, causing the performance of all client

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:21

Fig. 3. Boxplot showing the effect of qm on test loss for all datasets, with each box representing a group

(G-1–G-5 from highest to lowest model architecture) and the overall box representing all clients. Each group

contains multiple clients, and the boxplot provides a visual representation of the test loss distribution within

and across groups.

groups to degrade despite reduced performance variance, ultimately resulting in a more equitable
performance among groups. This highlights a tradeoff between performance and fairness, where
increasing fairness too much may lead to performance loss.

Figure 4 illustrates that higher values of q decrease inter-group variance, while also reducing
the overall performance as measured by the average test loss up to a certain q value, indicating an
overall improvement in performance. However, beyond this optimal point, further increases in q
lead to performance degradation. Thus, while the global fairness metric (q) can effectively reduce
inter-group variance among groups with architectural heterogeneity, it comes with a tradeoff in
performance after a certain threshold of q.

Key takeaways. Increasing the inter-group fairness metric (q) reduces variance among groups
with different hardware capabilities, particularly benefiting less capable groups. However, this im-
provement is balanced by a tradeoff with performance, which can degrade after reaching a certain
point. We found a wide spectrum of q values where it ensures both fairness and performance for
all the datasets making it suitable for tuning.

6.3 Performance of FairHetero

FairHetero demonstrates a notable reduction in overall performance variance among clients with
varying hardware computational power. In our experiments on four datasets (MNIST, FEMNIST,
CIFAR10, and SHAKESPEARE) with architecturally heterogeneous groups, we compare FairHetero

with existing partial training-based algorithms—HeteroFL [9], FedRolex [1] and FjORD [13] and
fair q-FFL [23] algorithm, modified to address architectural heterogeneity—in terms of test loss

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:22 Z. Talukder et al.

Fig. 4. Boxplot illustrating the impact of q on test loss for all datasets, where each box represents a group

(G-1–G-5 from highest to lowest model architecture), and the overall box represents all clients. Each group

contains multiple clients, and the boxplot visually depicts the test loss distribution within and across groups.

and test accuracy for each client, averaged across five random shuffles of each dataset. The re-
sults, as shown in Figure 5 for testing loss and Figure 6 for testing accuracy, indicate that with the
tuning of the parameters q and qm in Table 3, FairHetero achieves fairer solutions compared to
existing methods. On average, FairHetero reduces the variance of test loss across all devices by up
to 30% with improved average performance. In Table 3, we provide details on the worst and best
10% testing losses of the participating clients, as well as the variance of the final loss distributions.
Comparing FairHetero with the existing algorithms, we observe that the proposed objective main-
tains similar or better average testing loss and accuracy while significantly reducing the variance
of the performance of participating devices, ensuring uniformity.

Key takeaways. FairHetero demonstrates a significant reduction in overall performance vari-
ance among clients with varying hardware computational power compared to existing algorithms
while maintaining similar or better average testing loss and accuracy, ensuring fairness and uni-
formity in performance.

6.4 Comparison of Different Datasets with Varied q and qm : Group-level Variance and

Mean Analysis

A natural question comes as to how to choose the appropriate values of q and qm . Our proposed
FairHetero is flexible to tune q and qm as tradeoffs between fairness (more uniformity of per-
formance among participating clients) and overall performance (Average performance of all the
clients) after a certain value of q. However, we found that we can attain a large degree of fairness
among participating clients with overall better performance in most of the cases with smaller

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:23

Fig. 5. FairHetero leads to fairer test loss distributions compared to the SOTA algorithms for IID and Non-IID

data distribution for all the datasets.

values of q and qm . Another important benefit of qm is that we can tune the degree of fairness at
the group level. Each group with a different architecture can have different qm , so q and qm can
be tuned like hyperparameters based on the use cases and objectives.

We provide the detailed outcomes of our experiments where we tested various combinations of
q and qm values for the MNIST, CIFAR10, FEMNIST, and SHAKESPEARE datasets. The following table
presents the results, illustrating how the distribution of clients’ performance can be influenced by
different values of q and qm . In all the cases we found that added q and qm can effectively reduce
the variance of the performance of the clients having different architectures.

Outcome of MNIST dataset evaluation. Tables 4–6 present the average performance of each
group in the MNIST IID, Non-IID, and extreme datasets, showing the mean and variance of the loss
for different values of q and qm . Across all groups, as we keep the q value fixed and increase the
qm value, we observe an increase in mean losses for all groups, but the variance of performance
within each group decreases. This indicates that increasingqm helps address the data heterogeneity
within each group but does not address the hardware heterogeneity.

For increasing values of q, we notice a significant increase in the performance of the lowest ar-
chitecture groups, with minimal degradation in performance for the highest architecture group’s
clients. This leads to a more uniform performance across different architecture groups. However,
as the q value increases further, we observe an interesting trend. Instead of benefiting the perfor-
mance of the lowest architectural clients, the performance of all clients starts to degrade, with
the highest architecture clients suffering more. While this may result in a more balanced perfor-
mance across the groups, it comes at the cost of average performance degradation, highlighting
the tradeoff between fairness and performance.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:24 Z. Talukder et al.

Fig. 6. FairHetero leads to fairer test accuracy distributions compared to SOTA algorithms for IID and Non-

IID data distribution for all the datasets.

The optimal values of q for MNIST IID, MNIST Non-IID, and MNIST extreme are found to be in
the range 1–10, 1–10, and 1–10, respectively. Across all groups, FairHetero has a greater impact on
the performance of clients with limited resources, such as those in Group 5. Conversely, Group 1,
representing clients with the highest computational power, is less affected by increasing q and qm ,
indicating that these clients are less constrained by fairness considerations. The results demon-
strate FairHetero’s ability to balance fairness and performance across a range of computational
capabilities for MNIST dataset, making it effective in addressing heterogeneity in federated learn-
ing environments.

Outcome of CIFAR10 dataset evaluation. Tables 7–9 display the average performance of each
group in the CIFAR10 IID, Non-IID, and extreme datasets, indicating the mean and variance of the
loss for various q and qm values. Increasing qm reduces the variance within each group but does
not address hardware heterogeneity. For increasing q, there is initially a significant improvement
in the performance of lower architecture groups, but beyond a certain point, all groups experience
performance degradation, with higher architecture groups suffering more. The optimal q values
for CIFAR10 IID, Non-IID, and extreme datasets are in the range of 1–10. FairHetero has a greater
impact on clients with limited resources (e.g., Group 5) but less on clients with higher compu-
tational power (e.g., Group 1). Overall, FairHetero effectively balances fairness and performance
across various computational capabilities for the CIFAR10 dataset for the CNN model, addressing
heterogeneity in federated learning environments.

Outcome of FEMNIST dataset evaluation. Table 10 presents the average performance of each
group in the FEMNIST dataset, showing the mean and variance of the loss for different q and qm

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:25

Table 3. Comparison of Uniformity Measurements and Variance Analysis of FairHetero with HeteroFL,

q-ffl, FedRolex, and FjORD with Test Loss Considering Performances of All the Participating Clients from

All Groups with Different Model Architectures

Dataset
Objective

(q, qm1 − qm5)
Average Worst 10% Best 10% Variance

MNIST
IID

HeteroFL [9] 0.35 ± 0.27 0.86 ± 0.51 0.11 ± 0.0 0.07 ± 0.27
q-ffl [23] 0.29 ± 0.16 0.58 ± 0.29 0.11 ± 0.04 0.01 ± 0.12

FedRolex [1] 0.50 ± 0.57 1.56 ± 1.06 0.00 ± 0.07 0.33 ± 0.57
FjORD [13] 0.29 ± 0.20 0.66 ± 0.36 0.10 ± 0.00 0.04 ± 0.20

FairHetero (10,0.1,0.1,0.1,0.1,0.1) 0.28 ± 0.11 0.42 ± 0.14 0.12 ± 0.05 0.01 ± 0.11

MNIST
Non-IID

HeteroFL [9] 0.53 ± 0.46 1.38 ± 0.84 0.13 ± 0.06 0.21 ± 0.46
q-ffl [23] 0.61 ± 0.43 1.30 ± 0.69 0.18 ± 0.00 0.18 ± 0.43

FedRolex [1] 0.90 ± 0.74 2.03 ± 1.14 0.14 ± 0.03 0.54 ± 0.74
FjORD [13] 0.45 ± 0.42 1.18 ± 0.74 0.09 ± 0.06 0.18 ± 0.42

FairHetero (1,0.001,0.001,0.001,0.001,0.001) 0.43 ± 0.33 0.93 ± 0.50 0.14 ± 0.04 0.11 ± 0.33

MNIST
Exteme

HeteroFL [9] 0.56 ± 0.44 1.22 ± 0.66 0.15 ± 0.04 0.20 ± 0.44
q-ffl [23] 0.91 ± 0.34 1.43 ± 0.52 0.56 ± 0.01 0.12 ± 0.34

FedRolex [1] 0.97 ± 0.76 2.14 ± 1.16 0.21 ± 0.01 0.57 ± 0.76
FjORD [13] 0.47 ± 0.40 1.03 ± 0.56 0.13 ± 0.06 0.16 ± 0.40

FairHetero (1,0.001,0.001,0.001,0.001,0.001) 0.45 ± 0.32 0.81 ± 0.36 0.16 ± 0.02 0.10 ± 0.32

CIFAR10
IID

HeteroFL [9] 1.64 ± 0.33 1.14 ± 0.16 2.04 ± 0.41 0.11 ± 0.33
q-ffl [23] 1.53 ± 0.36 2.02 ± 0.49 1.12 ± 0.05 0.13 ± 0.36

FedRolex [1] 1.89 ± 0.48 1.03 ± 0.38 2.35 ± 0.46 0.23 ± 0.48
FjORD [13] 1.56 ± 0.38 2.08 ± 0.51 1.13 ± 0.06 0.14 ± 0.38

FairHetero (10,0.1,0.1,0.1,0.1,0.1) 1.55 ± 0.29 1.94 ± 0.39 1.22 ± 0.04 0.08 ± 0.29

CIFAR10
Non-IID

HeteroFL [9] 1.31 ± 0.54 1.99 ± 0.68 0.44 ± 0.32 0.30 ± 0.54
q-ffl [23] 11.64 ± 0.33 2.10 ± 0.46 1.19 ± 0.11 0.11 ± 0.33

FedRolex [1] 1.80 ± 0.65 2.42 ± 0.62 0.57 ± 0.58 0.43 ± 0.65
FjORD [13] 1.50 ± 0.38 2.00 ± 0.50 0.98 ± 0.14 0.15 ± 0.38

FairHetero (10,0.1,0.1,0.1,0.1,0.1) 1.46 ± 0.32 1.85 ± 0.40 1.03 ± 0.11 0.10 ± 0.32

CIFAR10
Extreme

HeteroFL [9] 1.40 ± 0.48 1.94 ± 0.55 0.71 ± 0.20 0.23 ± 0.48
q-ffl [23] 1.68 ± 0.34 22.00 ± 0.32 0.16 ± 0.18 0.11 ± 0.34

FedRolex [1] 1.89 ± 0.58 2.53 ± 0.64 0.97 ± 0.34 0.34 ± 0.58
FjORD [13] 1.56 ± 0.41 2.01 ± 0.44 0.99 ± 0.16 0.16 ± 0.41

FairHetero (10,0.1,0.1,0.1,0.1,0.1) 1.53 ± 0.36 1.88 ± 0.35 1.03 ± 0.14 0.13 ± 0.36

FEMNIST

HeteroFL [9] 0.75 ± 0.48 1.39 ± 0.64 0.16 ± 0.11 0.24 ± 0.48
q-ffl [23] 0.73 ± 0.33 1.15 ± 0.42 0.31 ± 0.09 0.11 ± 0.33

FedRolex [1] 0.93 ± 0.52 1.71 ± 0.78 0.33 ± 0.09 0.27 ± 0.52
FjORD [13] 0.74 ± 0.40 1.28 ± 0.54 0.25 ± 0.09 0.16 ± 0.40

FairHetero (50,1e-06,1e-05,0.0001,0.001,0.01) 0.60 ± 0.44 1.10 ± 0.50 0.13 ± 0.03 0.20 ± 0.44

SHAKESPEARE

HeteroFL [9] 2.21 ± 0.21 2.47 ± 0.27 1.91 ± 0.08 0.04 ± 0.21
q-ffl [23] 2.30 ± 0.16 2.49 ± 0.19 2.06 ± 0.08 0.02 ± 0.16

FedRolex [1] 2.28 ± 0.27 2.66 ± 0.37 1.91 ± 0.11 0.07 ± 0.27
FjORD [13] 2.17 ± 0.16 2.35 ± 0.18 1.97 ± 0.04 0.03 ± 0.16

FairHetero (0.001,0.1,0.01,0.001,0.0001,1e-05) 2.02 ± 0.17 2.21 ± 0.19 1.81 ± 0.04 0.03 ± 0.17

Bold in Table 3 means maximum.

values. Increasing qm reduces the variance within each group but does not address hardware het-
erogeneity. With increasing q, there is initially a notable enhancement in the performance of lower
architecture groups, but beyond a certain threshold, all groups experience performance degrada-
tion, with higher architecture groups being more affected. The optimal q values for the FEMNIST
dataset fall in the range of 10–100. FairHetero has a more pronounced impact on clients with
limited resources (e.g., Group 5) compared to those with higher computational power (e.g., Group
1). Overall, FairHetero effectively balances fairness and performance across various computational
capabilities for the FEMNIST dataset, addressing heterogeneity in federated learning environments.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:26 Z. Talukder et al.

Table 4. Performance of FairHetero for MNIST IID Dataset with Different q and qm Values

q qm1-qm5
Group 1 Group 2 Group 3 Group4 Group 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

0

0,0,0,0,0 0.19 ± 0.12 0.01 ± 0.12 0.18 ± 0.07 0.01 ± 0.07 0.19 ± 0.05 0.00 ± 0.05 0.25 ± 0.02 0.00 ± 0.02 0.58 ± 0.02 0.00 ± 0.02
0.1,0.1,0.1,0.1,0.1 0.14 ± 0.08 0.01 ± 0.08 0.17 ± 0.06 0.00 ± 0.06 0.20 ± 0.05 0.00 ± 0.05 0.28 ± 0.02 0.00 ± 0.02 0.74 ± 0.02 0.00 ± 0.02

1,1,1,1,1 0.14 ± 0.06 0.00 ± 0.06 0.22 ± 0.06 0.00 ± 0.06 0.25 ± 0.05 0.00 ± 0.05 0.39 ± 0.02 0.00 ± 0.02 1.11 ± 0.02 0.00 ± 0.02
10,10,10,10,10 0.26 ± 0.06 0.00 ± 0.06 0.36 ± 0.08 0.01 ± 0.08 0.46 ± 0.05 0.00 ± 0.05 0.85 ± 0.02 0.00 ± 0.02 1.73 ± 0.01 0.00 ± 0.01
50,50,50,50,50 0.38 ± 0.06 0.00 ± 0.06 0.59 ± 0.06 0.00 ± 0.06 0.94 ± 0.04 0.00 ± 0.04 1.45 ± 0.02 0.00 ± 0.02 2.03 ± 0.01 0.00 ± 0.01

0.1

0,0,0,0,0 0.16 ± 0.11 0.01 ± 0.11 0.14 ± 0.06 0.00 ± 0.06 0.15 ± 0.06 0.00 ± 0.06 0.24 ± 0.02 0.00 ± 0.02 0.46 ± 0.02 0.00 ± 0.02
0.1,0.1,0.1,0.1,0.1 0.12 ± 0.07 0.01 ± 0.07 0.14 ± 0.05 0.00 ± 0.05 0.15 ± 0.05 0.00 ± 0.05 0.27 ± 0.02 0.00 ± 0.02 0.58 ± 0.02 0.00 ± 0.02

1,1,1,1,1 0.14 ± 0.05 0.00 ± 0.05 0.19 ± 0.05 0.00 ± 0.05 0.20 ± 0.04 0.00 ± 0.04 0.41 ± 0.02 0.00 ± 0.02 1.02 ± 0.02 0.00 ± 0.02
10,10,10,10,10 0.26 ± 0.06 0.00 ± 0.06 0.35 ± 0.08 0.01 ± 0.08 0.44 ± 0.05 0.00 ± 0.05 0.82 ± 0.02 0.00 ± 0.02 1.69 ± 0.01 0.00 ± 0.01
50,50,50,50,50 0.37 ± 0.06 0.00 ± 0.06 0.58 ± 0.07 0.00 ± 0.07 0.92 ± 0.04 0.00 ± 0.04 1.42 ± 0.02 0.00 ± 0.02 2.01 ± 0.01 0.00 ± 0.01

1

0,0,0,0,0 0.13 ± 0.08 0.01 ± 0.08 0.15 ± 0.06 0.00 ± 0.06 0.17 ± 0.06 0.00 ± 0.06 0.27 ± 0.03 0.00 ± 0.03 0.40 ± 0.03 0.00 ± 0.03
0.1,0.1,0.1,0.1,0.1 0.12 ± 0.07 0.00 ± 0.07 0.15 ± 0.05 0.00 ± 0.05 0.17 ± 0.06 0.00 ± 0.06 0.27 ± 0.03 0.00 ± 0.05 0.42 ± 0.03 0.00 ± 0.03

1,1,1,1,1 0.14 ± 0.06 0.00 ± 0.06 0.20 ± 0.06 0.00 ± 0.06 0.21 ± 0.05 0.00 ± 0.05 0.32 ± 0.03 0.00 ± 0.05 0.58 ± 0.02 0.00 ± 0.02
10,10,10,10,10 0.27 ± 0.07 0.00 ± 0.07 0.35 ± 0.08 0.01 ± 0.08 0.39 ± 0.05 0.00 ± 0.05 0.59 ± 0.03 0.00 ± 0.03 1.26 ± 0.02 0.00 ± 0.02
50,50,50,50,50 0.37 ± 0.06 0.00 ± 0.06 0.54 ± 0.07 0.01 ± 0.07 0.73 ± 0.04 0.00 ± 0.04 1.15 ± 0.03 0.00 ± 0.03 1.84 ± 0.01 0.00 ± 0.01

10

0,0,0,0,0 0.17 ± 0.06 0.00 ± 0.06 0.25 ± 0.07 0.01 ± 0.07 0.26 ± 0.07 0.00 ± 0.07 0.31 ± 0.03 0.00 ± 0.03 0.43 ± 0.04 0.00 ± 0.04
0.1,0.1,0.1,0.1,0.1 0.17 ± 0.06 0.00 ± 0.06 0.26 ± 0.07 0.01 ± 0.07 0.26 ± 0.07 0.00 ± 0.07 0.31 ± 0.03 0.00 ± 0.03 0.43 ± 0.04 0.00 ± 0.04

1,1,1,1,1 0.20 ± 0.06 0.00 ± 0.06 0.27 ± 0.08 0.01 ± 0.08 0.28 ± 0.06 0.00 ± 0.06 0.32 ± 0.03 0.00 ± 0.03 0.44 ± 0.04 0.00 ± 0.04
10,10,10,10,10 0.30 ± 0.07 0.01 ± 0.07 0.35 ± 0.09 0.01 ± 0.09 0.34 ± 0.06 0.00 ± 0.06 0.38 ± 0.03 0.00 ± 0.03 0.52 ± 0.03 0.00 ± 0.03
50,50,50,50,50 0.37 ± 0.07 0.01 ± 0.07 0.44 ± 0.10 0.01 ± 0.10 0.42 ± 0.07 0.00 ± 0.07 0.47 ± 0.04 0.00 ± 0.04 0.65 ± 0.03 0.00 ± 0.03

50

0,0,0,0,0 0.35 ± 0.08 0.01 ± 0.07 0.40 ± 0.10 0.01 ± 0.10 0.37 ± 0.07 0.00 ± 0.07 0.39 ± 0.04 0.00 ± 0.04 0.50 ± 0.04 0.00 ± 0.04
0.1,0.1,0.1,0.1,0.1 0.35 ± 0.08 0.01 ± 0.07 0.40 ± 0.10 0.01 ± 0.10 0.38 ± 0.07 0.00 ± 0.07 0.39 ± 0.04 0.00 ± 0.04 0.50 ± 0.04 0.00 ± 0.04

1,1,1,1,1 0.35 ± 0.08 0.01 ± 0.07 0.40 ± 0.10 0.01 ± 0.10 0.38 ± 0.07 0.00 ± 0.07 0.39 ± 0.04 0.00 ± 0.04 0.50 ± 0.04 0.00 ± 0.04
10,10,10,10,10 0.38 ± 0.08 0.01 ± 0.07 0.43 ± 0.11 0.01 ± 0.11 0.39 ± 0.07 0.00 ± 0.07 0.40 ± 0.04 0.00 ± 0.04 0.52 ± 0.03 0.00 ± 0.03
50,50,50,50,50 0.46 ± 0.09 0.01 ± 0.09 0.49 ± 0.11 0.01 ± 0.11 0.43 ± 0.07 0.00 ± 0.07 0.44 ± 0.04 0.00 ± 0.04 0.59 ± 0.03 0.00 ± 0.03

Table 5. Performance of FairHetero for MNIST Non-IID Dataset with Different q and qm Values

q qm1-qm5
Group 1 Group 2 Group 3 Group4 Group 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

0

0,0,0,0,0 0.19 ± 0.09 0.01 ± 0.09 0.27 ± 0.12 0.01 ± 0.12 0.26 ± 0.15 0.02 ± 0.15 0.65 ± 0.23 0.05 ± 0.23 1.30 ± 0.34 0.12 ± 0.34
0.1,0.1,0.1,0.1,0.1 0.23 ± 0.09 0.01 ± 0.09 0.34 ± 0.13 0.02 ± 0.13 0.34 ± 0.17 0.03 ± 0.17 0.93 ± 0.33 0.11 ± 0.33 1.61 ± 0.31 0.10 ± 0.31

1,1,1,1,1 0.25 ± 0.10 0.01 ± 0.10 0.39 ± 0.13 0.02 ± 0.13 0.42 ± 0.17 0.03 ± 0.17 1.11 ± 0.33 0.11 ± 0.33 1.78 ± 0.27 0.07 ± 0.27
10,10,10,10,10 0.69 ± 0.10 0.01 ± 0.10 1.01 ± 0.13 0.02 ± 0.13 1.25 ± 0.15 0.02 ± 0.15 1.85 ± 0.22 0.05 ± 0.22 2.17 ± 0.14 0.02 ± 0.14
50,50,50,50,50 1.51 ± 0.10 0.01 ± 0.10 1.82 ± 0.15 0.02 ± 0.15 2.00 ± 0.08 0.01 ± 0.08 2.17 ± 0.11 0.01 ± 0.11 2.27 ± 0.05 0.00 ± 0.05

0.1

0,0,0,0,0 0.20 ± 0.10 0.01 ± 0.10 0.28 ± 0.12 0.01 ± 0.12 0.26 ± 0.15 0.02 ± 0.15 0.65 ± 0.23 0.05 ± 0.23 1.28 ± 0.34 0.12 ± 0.34
1,0.1,0.1,0.1,0.1 0.23 ± 0.09 0.01 ± 0.09 0.34 ± 0.13 0.02 ± 0.13 0.33 ± 0.17 0.03 ± 0.17 0.88 ± 0.31 0.09 ± 0.31 1.55 ± 0.32 0.10 ± 0.32

10,1,1,1,1 0.52 ± 0.08 0.01 ± 0.08 0.69 ± 0.18 0.03 ± 0.18 0.82 ± 0.24 0.06 ± 0.24 1.55 ± 0.35 0.12 ± 0.35 2.05 ± 0.25 0.06 ± 0.25
10,10,10,10,10 0.69 ± 0.10 0.01 ± 0.10 1.00 ± 0.13 0.02 ± 0.13 1.24 ± 0.15 0.02 ± 0.15 1.84 ± 0.22 0.05 ± 0.22 2.17 ± 0.14 0.02 ± 0.14

1

0,0,0,0,0 0.20 ± 0.10 0.01 ± 0.10 0.29 ± 0.13 0.02 ± 0.13 0.26 ± 0.14 0.02 ± 0.14 0.48 ± 0.18 0.03 ± 0.18 0.92 ± 0.3 0.12 ± 0.35
0.1,0.1,0.1,0.1,0.1 0.21 ± 0.10 0.01 ± 0.10 0.30 ± 0.13 0.02 ± 0.13 0.27 ± 0.15 0.02 ± 0.15 0.51 ± 0.18 0.03 ± 0.18 0.96 ± 0.35 0.12 ± 0.35
.0001,.001,.01,.1,1 0.20 ± 0.10 0.01 ± 0.10 0.29 ± 0.12 0.01 ± 0.12 0.28 ± 0.16 0.02 ± 0.16 1.06 ± 0.35 0.12 ± 0.35 1.75 ± 0.29 0.08 ± 0.29

1,1,1,1,1 0.26 ± 0.10 0.01 ± 0.10 0.37 ± 0.13 0.02 ± 0.13 0.36 ± 0.16 0.02 ± 0.16 0.76 ± 0.21 0.04 ± 0.21 1.29 ± 0.31 0.10 ± 0.31

10

0,0,0,0,0 0.24 ± 0.11 0.01 ± 0.11 0.33 ± 0.14 0.02 ± 0.14 0.30 ± 0.15 0.02 ± 0.15 0.47 ± 0.17 0.03 ± 0.17 0.77 ± 0.31 0.10 ± 0.31
0.1,0.1,0.1,0.1,0.1 0.24 ± 0.11 0.01 ± 0.11 0.33 ± 0.14 0.02 ± 0.14 0.31 ± 0.15 0.02 ± 0.15 0.48 ± 0.17 0.03 ± 0.17 0.78 ± 0.31 0.10 ± 0.31

1,1,1,1,1 0.27 ± 0.12 0.01 ± 0.12 0.38 ± 0.14 0.02 ± 0.14 0.35 ± 0.15 0.02 ± 0.15 0.55 ± 0.16 0.03 ± 0.16 0.84 ± 0.27 0.07 ± 0.27
.0001,.001,.01,.1,1 0.26 ± 0.11 0.01 ± 0.11 0.37 ± 0.15 0.02 ± 0.15 0.36 ± 0.19 0.04 ± 0.19 1.12 ± 0.35 0.12 ± 0.35 1.61 ± 0.38 0.14 ± 0.38

10,10,10,10,10 0.58 ± 0.09 0.01 ± 0.09 0.73 ± 0.15 0.02 ± 0.15 0.75 ± 0.14 0.02 ± 0.14 1.08 ± 0.13 0.02 ± 0.13 1.40 ± 0.23 0.05 ± 0.23

50

0,0,0,0,0 0.56 ± 0.15 0.02 ± 0.15 0.68 ± 0.23 0.05 ± 0.23 0.64 ± 0.27 0.07 ± 0.27 0.93 ± 0.28 0.08 ± 0.28 1.18 ± 0.46 0.21 ± 0.46
0.1,0.1,0.1,0.1,0.1 0.56 ± 0.14 0.02 ± 0.14 0.68 ± 0.23 0.05 ± 0.23 0.65 ± 0.26 0.07 ± 0.26 0.93 ± 0.27 0.07 ± 0.27 1.18 ± 0.45 0.20 ± 0.45

1,1,1,1,1 0.67 ± 0.11 0.01 ± 0.11 0.75 ± 0.23 0.05 ± 0.23 0.71 ± 0.24 0.06 ± 0.24 0.98 ± 0.24 0.06 ± 0.24 1.22 ± 0.39 0.15 ± 0.39
10,10,10,10,10 0.85 ± 0.08 0.01 ± 0.08 1.01 ± 0.18 0.03 ± 0.18 1.03 ± 0.18 0.03 ± 0.18 1.28 ± 0.16 0.03 ± 0.16 1.49 ± 0.25 0.06 ± 0.25
50,50,50,50,50 1.51 ± 0.11 0.01 ± 0.11 1.65 ± 0.23 0.05 ± 0.23 1.72 ± 0.16 0.03 ± 0.16 1.85 ± 0.16 0.02 ± 0.16 1.99 ± 0.05 0.00 ± 0.05

Outcome of SHAKESPEARE dataset evaluation. Table 11 illustrates the average performance
of each group in the SHAKESPEARE dataset, displaying the mean and variance of the loss for dif-
ferent q and qm values. Increasing qm decreases the variance within each group but does not
mitigate hardware heterogeneity. As q increases, there is an initial enhancement in the perfor-
mance of lower architecture groups. However, beyond a certain point, all groups experience per-
formance degradation, with higher architecture groups being more affected. The optimal q values
for the SHAKESPEARE dataset range from 0 to 1, indicating a narrow range for RNN models. Overall,
FairHetero effectively balances fairness and performance across various computational capabili-
ties for the SHAKESPEARE dataset in RNN models, addressing heterogeneity in federated learning
environments.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:27

Table 6. Performance of FairHetero for MNIST Non-IID Extreme Dataset with Different q and qm Values

q qm1-qm5
Group 1 Group 2 Group 3 Group4 Group 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

0

0,0,0,0,0 0.27 ± 0.13 0.02 ± 0.13 0.25 ± 0.11 0.01 ± 0.11 0.31 ± 0.16 0.03 ± 0.16 0.65 ± 0.22 0.05 ± 0.22 1.29 ± 0.30 0.09 ± 0.30
0.1,0.1,0.1,0.1,0.1 0.29 ± 0.13 0.02 ± 0.13 0.27 ± 0.11 0.01 ± 0.11 0.33 ± 0.16 0.03 ± 0.16 0.73 ± 0.24 0.06 ± 0.24 1.40 ± 0.27 0.08 ± 0.27

1,1,1,1,1 0.61 ± 0.10 0.01 ± 0.10 0.66 ± 0.15 0.02 ± 0.15 0.84 ± 0.17 0.03 ± 0.17 1.58 ± 0.31 0.10 ± 0.31 2.03 ± 0.12 0.01 ± 0.12
10,10,10,10,10 1.27 ± 0.08 0.01 ± 0.08 1.44 ± 0.10 0.01 ± 0.10 1.63 ± 0.12 0.01 ± 0.12 2.03 ± 0.16 0.03 ± 0.16 2.22 ± 0.05 0.00 ± 0.05
50,50,50,50,50 1.50 ± 0.08 0.01 ± 0.08 1.72 ± 0.08 0.01 ± 0.08 1.90 ± 0.06 0.00 ± 0.06 2.15 ± 0.09 0.01 ± 0.09 2.15 ± 0.09 0.01 ± 0.09

0.1

0.1,0,0,0,0 0.29 ± 0.13 0.02 ± 0.13 0.26 ± 0.11 0.01 ± 0.11 0.32 ± 0.17 0.03 ± 0.17 0.66 ± 0.22 0.05 ± 0.22 1.28 ± 0.31 0.10 ± 0.31
1,0.1,0.1,0.1,0.1 0.29 ± 0.13 0.02 ± 0.13 0.27 ± 0.11 0.01 ± 0.11 0.33 ± 0.16 0.03 ± 0.16 0.70 ± 0.23 0.05 ± 0.23 1.33 ± 0.29 0.09 ± 0.29

10,1,1,1,1 0.60 ± 0.10 0.01 ± 0.10 0.65 ± 0.15 0.02 ± 0.15 0.83 ± 0.17 0.03 ± 0.17 1.55 ± 0.31 0.10 ± 0.31 2.01 ± 0.12 0.02 ± 0.12
10,10,10,10,10 0.74 ± 0.10 0.01 ± 0.10 0.91 ± 0.11 0.01 ± 0.11 1.19 ± 0.11 0.01 ± 0.11 1.81 ± 0.20 0.04 ± 0.20 2.13 ± 0.08 0.01 ± 0.08
50,50,50,50,50 1.50 ± 0.08 0.01 ± 0.08 1.72 ± 0.08 0.01 ± 0.08 1.90 ± 0.06 0.00 ± 0.06 2.15 ± 0.09 0.01 ± 0.09 2.26 ± 0.03 0.00 ± 0.03

1

0,0,0,0,0 0.29 ± 0.13 0.02 ± 0.13 0.27 ± 0.11 0.01 ± 0.11 0.31 ± 0.17 0.03 ± 0.17 0.50 ± 0.16 0.03 ± 0.16 0.89 ± 0.38 0.15 ± 0.38
0.1,0.1,0.1,0.1,0.1 0.31 ± 0.13 0.02 ± 0.13 0.28 ± 0.11 0.01 ± 0.11 0.32 ± 0.17 0.03 ± 0.17 0.53 ± 0.17 0.03 ± 0.17 0.94 ± 0.38 0.14 ± 0.38

10,1,1,1,1 0.56 ± 0.11 0.01 ± 0.11 0.57 ± 0.16 0.02 ± 0.16 0.69 ± 0.15 0.02 ± 0.15 1.27 ± 0.32 0.10 ± 0.32 1.77 ± 0.18 0.03 ± 0.18
10,10,10,10,10 0.72 ± 0.10 0.01 ± 0.10 0.85 ± 0.11 0.01 ± 0.11 1.10 ± 0.10 0.01 ± 0.10 1.68 ± 0.20 0.04 ± 0.20 2.05 ± 0.09 0.01 ± 0.09
50,50,50,50,50 1.49 ± 0.08 0.01 ± 0.08 1.70 ± 0.08 0.01 ± 0.08 1.88 ± 0.06 0.00 ± 0.06 2.13 ± 0.09 0.01 ± 0.09 2.25 ± 0.04 0.00 ± 0.04

10

0,0,0,0,0 0.35 ± 0.14 0.02 ± 0.14 0.32 ± 0.13 0.02 ± 0.13 0.35 ± 0.18 0.03 ± 0.18 0.49 ± 0.17 0.03 ± 0.17 0.78 ± 0.41 0.17 ± 0.41
0.001,0.01,0.1,1,10 0.36 ± 0.14 0.02 ± 0.14 0.36 ± 0.15 0.02 ± 0.15 0.43 ± 0.18 0.03 ± 0.18 1.14 ± 0.37 0.14 ± 0.37 1.65 ± 0.28 0.08 ± 0.28
0.1,0.1,0.1,0.1,0.1 0.36 ± 0.14 0.02 ± 0.14 0.33 ± 0.13 0.02 ± 0.13 0.35 ± 0.17 0.03 ± 0.17 0.50 ± 0.17 0.03 ± 0.17 0.79 ± 0.40 0.16 ± 0.40

1,1,1,1,1 0.41 ± 0.13 0.02 ± 0.13 0.38 ± 0.13 0.02 ± 0.13 0.40 ± 0.16 0.03 ± 0.16 0.56 ± 0.16 0.02 ± 0.16 0.86 ± 0.33 0.11 ± 0.33
10,10,10,10,10 0.64 ± 0.11 0.01 ± 0.11 0.66 ± 0.13 0.02 ± 0.13 0.76 ± 0.10 0.01 ± 0.10 1.04 ± 0.17 0.03 ± 0.17 1.45 ± 0.24 0.06 ± 0.24

50

0,0,0,0,0 0.61 ± 0.21 0.05 ± 0.21 0.59 ± 0.24 0.06 ± 0.24 0.65 ± 0.22 0.05 ± 0.22 0.92 ± 0.31 0.10 ± 0.31 1.19 ± 0.48 0.23 ± 0.48
0.1,0.1,0.1,0.1,0.1 0.61 ± 0.21 0.04 ± 0.21 0.59 ± 0.24 0.06 ± 0.24 0.65 ± 0.22 0.05 ± 0.22 0.92 ± 0.31 0.10 ± 0.31 1.20 ± 0.47 0.22 ± 0.47

1,1,1,1,1 0.63 ± 0.20 0.04 ± 0.20 0.60 ± 0.21 0.04 ± 0.21 0.68 ± 0.19 0.04 ± 0.19 0.93 ± 0.28 0.08 ± 0.28 1.22 ± 0.41 0.17 ± 0.41
10,10,10,10,10 0.84 ± 0.15 0.02 ± 0.15 0.85 ± 0.14 0.02 ± 0.14 0.98 ± 0.11 0.01 ± 0.11 1.26 ± 0.22 0.05 ± 0.22 1.54 ± 0.26 0.07 ± 0.26

Table 7. Performance of FairHetero for CIFAR10 IID Dataset with Different q and qm Values

q qm1-qm5
Group 1 Group 2 Group 3 Group4 Group 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

0

0,0,0,0,0 1.18 ± 0.14 0.02 ± 0.14 1.21 ± 0.11 0.01 ± 0.11 1.37 ± 0.08 0.01 ± 0.08 1.85 ± 0.02 0.00 ± 0.02 2.03 ± 0.02 0.00 ± 0.02
0.1,0.1,0.1,0.1,0.1 1.17 ± 0.13 0.02 ± 0.13 1.22 ± 0.11 0.01 ± 0.11 1.38 ± 0.08 0.01 ± 0.08 1.86 ± 0.02 0.00 ± 0.02 2.03 ± 0.02 0.00 ± 0.02

1,1,1,1,1 1.16 ± 0.12 0.01 ± 0.12 1.27 ± 0.10 0.01 ± 0.10 1.44 ± 0.07 0.00 ± 0.07 1.93 ± 0.02 0.00 ± 0.02 2.08 ± 0.02 0.00 ± 0.02
10,10,10,10,10 1.40 ± 0.10 0.01 ± 0.10 1.50 ± 0.09 0.01 ± 0.09 1.67 ± 0.04 0.00 ± 0.04 2.18 ± 0.01 0.00 ± 0.01 2.24 ± 0.01 0.00 ± 0.01
50,50,50,50,50 1.68 ± 0.08 0.01 ± 0.08 1.79 ± 0.05 0.00 ± 0.05 1.98 ± 0.04 0.00 ± 0.04 2.28 ± 0.00 0.00 ± 0.00 2.29 ± 0.00 0.00 ± 0.00

0.1

0,0,0,0,0 1.18 ± 0.14 0.02 ± 0.14 1.21 ± 0.11 0.01 ± 0.11 1.37 ± 0.08 0.01 ± 0.08 1.84 ± 0.02 0.00 ± 0.02 2.02 ± 0.02 0.00 ± 0.02
0.1,0.1,0.1,0.1,0.1 1.17 ± 0.13 0.02 ± 0.13 1.22 ± 0.11 0.01 ± 0.11 1.37 ± 0.08 0.01 ± 0.08 1.85 ± 0.02 0.00 ± 0.02 2.02 ± 0.02 0.00 ± 0.02

1,1,1,1,1 1.16 ± 0.11 0.01 ± 0.11 1.27 ± 0.10 0.01 ± 0.10 1.43 ± 0.07 0.00 ± 0.07 1.92 ± 0.02 0.00 ± 0.02 2.07 ± 0.02 0.00 ± 0.02
10,10,10,10,10 1.40 ± 0.10 0.01 ± 0.10 1.50 ± 0.09 0.01 ± 0.09 1.67 ± 0.04 0.00 ± 0.04 2.18 ± 0.01 0.00 ± 0.01 2.24 ± 0.01 0.00 ± 0.01

1

0,0,0,0,0 1.16 ± 0.13 0.02 ± 0.13 1.22 ± 0.11 0.01 ± 0.11 1.36 ± 0.08 0.01 ± 0.08 1.80 ± 0.02 0.00 ± 0.02 1.97 ± 0.02 0.00 ± 0.02
.01,.01,.01,.01,.01 1.16 ± 0.13 0.02 ± 0.13 1.21 ± 0.11 0.01 ± 0.11 1.36 ± 0.08 0.01 ± 0.08 1.80 ± 0.02 0.00 ± 0.02 1.97 ± 0.02 0.00 ± 0.02

1,1,1,1,1 1.17 ± 0.11 0.01 ± 0.11 1.26 ± 0.10 0.01 ± 0.10 1.42 ± 0.07 0.01 ± 0.07 1.86 ± 0.02 0.00 ± 0.02 2.02 ± 0.02 0.00 ± 0.02
10,10,10,10,10 1.40 ± 0.10 0.01 ± 0.10 1.50 ± 0.09 0.01 ± 0.09 1.66 ± 0.04 0.01 ± 0.04 2.14 ± 0.01 0.00 ± 0.01 2.21 ± 0.01 0.00 ± 0.01

10

0,0,0,0,0 1.19 ± 0.11 0.01 ± 0.11 1.25 ± 0.10 0.01 ± 0.10 1.39 ± 0.08 0.01 ± 0.08 1.74 ± 0.03 0.00 ± 0.03 1.87 ± 0.02 0.00 ± 0.02
0.1,0.1,0.1,0.1,0.1 1.19 ± 0.11 0.01 ± 0.11 1.26 ± 0.10 0.01 ± 0.10 1.39 ± 0.08 0.01 ± 0.08 1.74 ± 0.03 0.00 ± 0.03 1.87 ± 0.02 0.00 ± 0.02

1,1,1,1,1 1.23 ± 0.11 0.01 ± 0.11 1.30 ± 0.09 0.01 ± 0.09 1.43 ± 0.08 0.01 ± 0.08 1.76 ± 0.03 0.00 ± 0.03 1.88 ± 0.02 0.00 ± 0.02
10,10,10,10,10 1.45 ± 0.10 0.01 ± 0.10 1.51 ± 0.08 0.01 ± 0.08 1.62 ± 0.05 0.00 ± 0.05 1.91 ± 0.02 0.00 ± 0.02 2.02 ± 0.02 0.00 ± 0.02

50

0,0,0,0,0 1.40 ± 0.10 0.01 ± 0.10 1.43 ± 0.08 0.01 ± 0.08 1.52 ± 0.07 0.00 ± 0.07 1.79 ± 0.03 0.00 ± 0.03 1.87 ± 0.02 0.00 ± 0.02
0.1,0.1,0.1,0.1,0.1 1.41 ± 0.10 0.01 ± 0.10 1.44 ± 0.08 0.01 ± 0.08 1.52 ± 0.07 0.00 ± 0.07 1.79 ± 0.03 0.00 ± 0.03 1.87 ± 0.02 0.00 ± 0.02

1,1,1,1,1 1.43 ± 0.10 0.01 ± 0.10 1.46 ± 0.08 0.01 ± 0.08 1.53 ± 0.07 0.00 ± 0.07 1.80 ± 0.03 0.00 ± 0.03 1.87 ± 0.02 0.00 ± 0.02
10,10,10,10,10 1.87 ± 0.02 0.01 ± 0.09 1.60 ± 0.07 0.00 ± 0.07 1.65 ± 0.05 0.00 ± 0.05 1.84 ± 0.03 0.00 ± 0.03 1.90 ± 0.02 0.00 ± 0.02
50,50,50,50,50 1.77 ± 0.07 0.00 ± 0.07 1.80 ± 0.05 0.00 ± 0.05 1.85 ± 0.04 0.00 ± 0.04 2.01 ± 0.02 0.00 ± 0.02 2.06 ± 0.02 0.00 ± 0.02

Key takeaways. The values of q and qm are not overly sensitive regarding performance, gen-
erally exhibiting a wide range where they ensure both fairness and performance. This range was
found to be broader for MLP and CNN model architectures, as seen in the MNIST, CIFAR10, and
FEMNIST datasets, while narrower for the RNN model, as observed in the SHAKESPEARE dataset. In
most cases, even a small value of q and qm can ensure improved fairness with added performance.

7 Conclusion

In this article, we proposed a novel FL method, FairHetero, that promotes fairness among clients
with heterogeneous hardware or model architectures, ensuring balance and equity in model train-
ing. Our approach offers tunable fairness, addressing both data and hardware heterogeneity. We
conducted an extensive theoretical and experimental evaluation and demonstrated that FairHetero

can reduce performance variability among participating devices.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

5:28 Z. Talukder et al.

Table 8. Performance of FairHetero for CIFAR10 Non-IID Dataset with Different q and qm Values

q qm1-qm5
Group 1 Group 2 Group 3 Group4 Group 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

0

0,0,0,0,0 1.14 ± 0.28 0.08 ± 0.28 1.29 ± 0.29 0.09 ± 0.29 1.52 ± 0.30 0.09 ± 0.30 1.69 ± 0.26 0.07 ± 0.26 1.88 ± 0.23 0.05 ± 0.23
0.1,0.1,0.1,0.1,0.1 1.16 ± 0.27 0.07 ± 0.27 1.32 ± 0.28 0.08 ± 0.28 1.54 ± 0.30 0.09 ± 0.30 1.72 ± 0.25 0.06 ± 0.25 1.90 ± 0.23 0.05 ± 0.23

1,1,1,1,1 1.31 ± 0.23 0.05 ± 0.23 1.46 ± 0.25 0.06 ± 0.25 1.66 ± 0.29 0.09 ± 0.29 1.86 ± 0.23 0.05 ± 0.23 2.01 ± 0.19 0.03 ± 0.19
10,10,10,10,10 1.67 ± 0.10 0.01 ± 0.10 1.78 ± 0.16 0.02 ± 0.16 1.95 ± 0.19 0.04 ± 0.19 2.14 ± 0.16 0.03 ± 0.16 2.22 ± 0.09 0.01 ± 0.09
50,50,50,50,50 1.94 ± 0.12 0.02 ± 0.12 2.09 ± 0.18 0.03 ± 0.18 2.20 ± 0.13 0.02 ± 0.13 2.24 ± 0.10 0.01 ± 0.10 2.28 ± 0.06 0.00 ± 0.06

0.1

0,0,0,0,0 1.14 ± 0.28 0.08 ± 0.28 1.29 ± 0.29 0.09 ± 0.29 1.51 ± 0.30 0.09 ± 0.30 1.69 ± 0.26 0.07 ± 0.26 1.87 ± 0.23 0.05 ± 0.23
0.1,0.1,0.1,0.1,0.1 1.16 ± 0.27 0.07 ± 0.27 1.32 ± 0.28 0.08 ± 0.28 1.54 ± 0.30 0.09 ± 0.30 1.71 ± 0.25 0.06 ± 0.25 1.90 ± 0.23 0.05 ± 0.23

1,1,1,1,1 1.31 ± 0.23 0.05 ± 0.23 1.46 ± 0.25 0.06 ± 0.25 1.66 ± 0.29 0.09 ± 0.29 1.85 ± 0.23 0.05 ± 0.23 2.01 ± 0.19 0.03 ± 0.19
10,10,10,10,10 1.67 ± 0.10 0.01 ± 0.10 1.78 ± 0.16 0.02 ± 0.16 1.95 ± 0.19 0.04 ± 0.19 2.14 ± 0.16 0.03 ± 0.16 2.22 ± 0.09 0.01 ± 0.09

1

0,0,0,0,0 1.15 ± 0.27 0.07 ± 0.27 1.28 ± 0.29 0.08 ± 0.29 1.49 ± 0.30 0.09 ± 0.30 1.65 ± 0.26 0.07 ± 0.26 1.83 ± 0.23 0.05 ± 0.23
0.1,0.1,0.1,0.1,0.1 1.17 ± 0.26 0.07 ± 0.26 1.32 ± 0.29 0.08 ± 0.29 1.52 ± 0.30 0.09 ± 0.30 1.67 ± 0.25 0.06 ± 0.25 1.85 ± 0.22 0.05 ± 0.22

1,1,1,1,1 1.32 ± 0.23 0.05 ± 0.23 1.46 ± 0.26 0.07 ± 0.26 1.64 ± 0.29 0.09 ± 0.29 1.81 ± 0.23 0.05 ± 0.23 1.96 ± 0.19 0.04 ± 0.19
10,10,10,10,10 1.68 ± 0.10 0.01 ± 0.10 1.77 ± 0.16 0.03 ± 0.16 1.93 ± 0.20 0.04 ± 0.20 2.12 ± 0.17 0.03 ± 0.17 2.20 ± 0.09 0.01 ± 0.09

10

0,0,0,0,0 1.23 ± 0.26 0.07 ± 0.26 1.30 ± 0.29 0.08 ± 0.29 1.48 ± 0.29 0.08 ± 0.29 1.57 ± 0.24 0.06 ± 0.24 1.71 ± 0.23 0.05 ± 0.23
0.1,0.1,0.1,0.1,0.1 1.25 ± 0.26 0.07 ± 0.26 1.33 ± 0.30 0.09 ± 0.30 1.49 ± 0.29 0.08 ± 0.29 1.58 ± 0.24 0.06 ± 0.24 1.72 ± 0.23 0.05 ± 0.23

1,1,1,1,1 1.37 ± 0.23 0.05 ± 0.23 1.45 ± 0.26 0.07 ± 0.26 1.57 ± 0.26 0.07 ± 0.26 1.65 ± 0.23 0.05 ± 0.23 1.78 ± 0.19 0.03 ± 0.19
10,10,10,10,10 1.73 ± 0.09 0.01 ± 0.09 1.78 ± 0.16 0.03 ± 0.16 1.87 ± 0.18 0.03 ± 0.18 1.96 ± 0.16 0.02 ± 0.16 2.05 ± 0.10 0.01 ± 0.10

50

0,0,0,0,0 1.37 ± 0.25 0.06 ± 0.25 1.38 ± 0.29 0.08 ± 0.29 1.50 ± 0.29 0.09 ± 0.29 1.56 ± 0.25 0.06 ± 0.25 1.66 ± 0.24 0.06 ± 0.24
1,1,1,1,1 1.46 ± 0.22 0.05 ± 0.22 1.47 ± 0.26 0.07 ± 0.26 1.57 ± 0.27 0.07 ± 0.27 1.61 ± 0.23 0.05 ± 0.23 1.71 ± 0.20 0.04 ± 0.20

10,10,10,10,10 1.77 ± 0.08 0.01 ± 0.08 1.77 ± 0.15 0.02 ± 0.15 1.84 ± 0.17 0.03 ± 0.17 1.88 ± 0.14 0.02 ± 0.14 1.95 ± 0.10 0.01 ± 0.10
50,50,50,50,50 2.03 ± 0.08 0.01 ± 0.08 2.07 ± 0.16 0.03 ± 0.16 2.06 ± 0.15 0.02 ± 0.15 2.12 ± 0.15 0.02 ± 0.15 2.16 ± 0.11 0.01 ± 0.11

Table 9. Performance of FairHetero for CIFAR10 Non-IID Extreme Dataset with Different q and qm Values

q qm1-qm5
Group 1 Group 2 Group 3 Group4 Group 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

0

0,0,0,0,0 1.29 ± 0.34 0.12 ± 0.34 1.32 ± 0.38 0.14 ± 0.38 1.56 ± 0.44 0.19 ± 0.44 1.77 ± 0.22 0.05 ± 0.22 1.88 ± 0.23 0.05 ± 0.23
0.1,0.1,0.1,0.1,0.1 1.32 ± 0.33 0.11 ± 0.33 1.36 ± 0.37 0.14 ± 0.37 1.58 ± 0.43 0.18 ± 0.43 1.79 ± 0.21 0.04 ± 0.21 1.89 ± 0.22 0.05 ± 0.22

1,1,1,1,1 1.45 ± 0.29 0.08 ± 0.29 1.49 ± 0.33 0.11 ± 0.33 1.66 ± 0.36 0.13 ± 0.36 1.90 ± 0.18 0.03 ± 0.18 2.00 ± 0.18 0.03 ± 0.18
10,10,10,10,10 1.75 ± 0.26 0.07 ± 0.26 1.80 ± 0.21 0.04 ± 0.21 1.93 ± 0.21 0.04 ± 0.21 2.16 ± 0.10 0.01 ± 0.10 2.21 ± 0.09 0.01 ± 0.09
50,50,50,50,50 1.96 ± 0.25 0.06 ± 0.25 2.12 ± 0.17 0.03 ± 0.17 2.14 ± 0.14 0.02 ± 0.14 2.25 ± 0.06 0.00 ± 0.06 2.27 ± 0.04 0.00 ± 0.04

0.1

0,0,0,0,0 1.29 ± 0.34 0.12 ± 0.34 1.32 ± 0.38 0.14 ± 0.38 1.55 ± 0.44 0.19 ± 0.44 1.76 ± 0.22 0.05 ± 0.22 1.87 ± 0.23 0.05 ± 0.23
0.1,0.1,0.1,0.1,0.1 1.32 ± 0.33 0.11 ± 0.33 1.36 ± 0.38 0.14 ± 0.38 1.57 ± 0.43 0.18 ± 0.43 1.78 ± 0.21 0.04 ± 0.21 1.89 ± 0.22 0.05 ± 0.22

1,1,1,1,1 1.46 ± 0.29 0.08 ± 0.29 1.49 ± 0.33 0.11 ± 0.33 1.66 ± 0.36 0.13 ± 0.36 1.90 ± 0.18 0.03 ± 0.18 1.99 ± 0.18 0.03 ± 0.18
10,10,10,10,10 1.76 ± 0.26 0.07 ± 0.26 1.80 ± 0.21 0.05 ± 0.21 1.92 ± 0.21 0.04 ± 0.21 2.16 ± 0.10 0.01 ± 0.10 2.20 ± 0.09 0.01 ± 0.09

1

0,0,0,0,0 1.30 ± 0.34 0.11 ± 0.34 1.33 ± 0.38 0.14 ± 0.38 1.54 ± 0.43 0.19 ± 0.43 1.73 ± 0.22 0.05 ± 0.22 1.82 ± 0.24 0.06 ± 0.24
0.1,0.1,0.1,0.1,0.1 1.33 ± 0.33 0.11 ± 0.33 1.37 ± 0.37 0.14 ± 0.37 1.56 ± 0.42 0.18 ± 0.42 1.75 ± 0.22 0.05 ± 0.22 1.84 ± 0.23 0.05 ± 0.23

1,1,1,1,1 1.47 ± 0.29 0.08 ± 0.29 1.50 ± 0.33 0.11 ± 0.33 1.65 ± 0.36 0.13 ± 0.36 1.86 ± 0.18 0.03 ± 0.18 1.93 ± 0.19 0.04 ± 0.19
10,10,10,10,10 1.76 ± 0.25 0.06 ± 0.25 1.79 ± 0.22 0.05 ± 0.22 1.90 ± 0.21 0.05 ± 0.21 2.13 ± 0.10 0.01 ± 0.10 2.18 ± 0.09 0.01 ± 0.09

10

0,0,0,0,0 1.36 ± 0.32 0.10 ± 0.32 1.38 ± 0.38 0.15 ± 0.38 1.51 ± 0.43 0.19 ± 0.43 1.64 ± 0.23 0.05 ± 0.23 1.70 ± 0.29 0.08 ± 0.29
0.1,0.1,0.1,0.1,0.1 1.38 ± 0.31 0.10 ± 0.31 1.40 ± 0.38 0.14 ± 0.38 1.52 ± 0.42 0.18 ± 0.42 1.65 ± 0.23 0.05 ± 0.23 1.71 ± 0.28 0.08 ± 0.28

1,1,1,1,1 1.50 ± 0.27 0.07 ± 0.27 1.51 ± 0.33 0.11 ± 0.33 1.58 ± 0.34 0.12 ± 0.34 1.72 ± 0.20 0.04 ± 0.20 1.75 ± 0.24 0.06 ± 0.24
10,10,10,10,10 1.80 ± 0.21 0.04 ± 0.21 1.78 ± 0.21 0.04 ± 0.21 1.82 ± 0.19 0.04 ± 0.19 1.98 ± 0.14 0.02 ± 0.14 1.97 ± 0.12 0.01 ± 0.12

50

0,0,0,0,0 1.46 ± 0.30 0.09 ± 0.30 1.45 ± 0.38 0.15 ± 0.38 1.52 ± 0.43 0.18 ± 0.43 1.64 ± 0.24 0.06 ± 0.24 1.66 ± 0.31 0.09 ± 0.31
1,1,1,1,1 1.56 ± 0.26 0.07 ± 0.26 1.52 ± 0.33 0.11 ± 0.33 1.57 ± 0.35 0.13 ± 0.35 1.68 ± 0.23 0.05 ± 0.23 1.69 ± 0.27 0.07 ± 0.27

10,10,10,10,10 1.83 ± 0.23 0.05 ± 0.23 1.77 ± 0.22 0.05 ± 0.22 1.78 ± 0.18 0.03 ± 0.18 1.90 ± 0.17 0.03 ± 0.17 1.86 ± 0.15 0.02 ± 0.15
50,50,50,50,50 2.04 ± 0.21 0.04 ± 0.21 2.04 ± 0.14 0.02 ± 0.14 2.01 ± 0.17 0.03 ± 0.17 2.12 ± 0.13 0.02 ± 0.13 2.10 ± 0.10 0.01 ± 0.10

Future directions. This article opens up several future research directions toward achieving FL
fairness under a heterogeneous architecture setting. First, as identified in Section 4.1, FairHetero

requires hyperparameter tuning that adds to FL overhead. However, given that our design goal
is to reduce variance in loss, we can utilize the distribution of clients’ training loss to tune the
parameters q and qm . Albeit, such an approach will require clients to report their training losses
along with model updates to the aggregation server. Second, different approaches have been used
to address heterogeneous architectures in FL, with the end goal of improving overall performance.
Adapting a fairness tradeoff mechanism such as FairHetero, in addition to handling heterogeneous
architecture, requires further investigation. Third, even though FairHetero introduces the notion
of hardware fairness, the fairness goal is still driven by model performance, yet there are other
important aspects of fairness such as the environmental impact of carbon emission and water
consumption of FL clients’ local training. Hence, future works addressing fairness will benefit
from taking a holistic fairness approach for the federation.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:29

Table 10. Performance of FairHetero for FEMNIST Dataset with Different q and qm Values

q qm1-qm5
Group 1 Group 2 Group 3 Group4 Group 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

0

0,0,0,0,0 0.45 ± 0.45 0.20 ± 0.45 0.45 ± 0.42 0.17 ± 0.42 0.56 ± 0.32 0.10 ± 0.32 1.04 ± 0.30 0.09 ± 0.30 1.25 ± 0.24 0.06 ± 0.24
0.1,0.1,0.1,0.1,0.1 0.45 ± 0.45 0.20 ± 0.45 0.45 ± 0.42 0.17 ± 0.42 0.56 ± 0.32 0.10 ± 0.32 1.04 ± 0.30 0.09 ± 0.30 1.25 ± 0.24 0.06 ± 0.24

1,1,1,1,1 0.45 ± 0.44 0.19 ± 0.44 0.45 ± 0.41 0.17 ± 0.41 0.57 ± 0.31 0.10 ± 0.31 1.04 ± 0.30 0.09 ± 0.30 1.25 ± 0.24 0.06 ± 0.24
10,10,10,10,10 0.51 ± 0.41 0.17 ± 0.41 0.51 ± 0.40 0.16 ± 0.40 0.63 ± 0.30 0.09 ± 0.30 1.10 ± 0.28 0.08 ± 0.28 1.30 ± 0.23 0.05 ± 0.23
50,50,50,50,50 0.46 ± 0.09 0.01 ± 0.09 0.49 ± 0.11 0.01 ± 0.11 0.43 ± 0.07 0.01 ± 0.07 0.44 ± 0.04 0.00 ± 0.04 0.59 ± 0.03 0.00 ± 0.03

0.1
0,0,0,0,0 0.45 ± 0.45 0.20 ± 0.45 0.45 ± 0.42 0.17 ± 0.42 0.56 ± 0.32 0.10 ± 0.32 1.04 ± 0.30 0.09 ± 0.30 1.25 ± 0.24 0.06 ± 0.24

0.1,.01,.01,.01,.01 0.45 ± 0.45 0.20 ± 0.45 0.45 ± 0.42 0.17 ± 0.42 0.56 ± 0.32 0.10 ± 0.32 1.03 ± 0.31 0.09 ± 0.31 1.24 ± 0.24 0.06 ± 0.24
.0001,.001,.01,.1,1 0.45 ± 0.45 0.20 ± 0.45 0.45 ± 0.42 0.17 ± 0.42 0.56 ± 0.32 0.10 ± 0.32 1.04 ± 0.31 0.09 ± 0.31 1.24 ± 0.24 0.06 ± 0.24

1

0,0,0,0,0 0.45 ± 0.46 0.21 ± 0.46 0.45 ± 0.43 0.18 ± 0.43 0.55 ± 0.33 0.11 ± 0.33 0.98 ± 0.32 0.10 ± 0.32 1.17 ± 0.26 0.07 ± 0.26
1,0.1,0.1,0.1,0.1 0.46 ± 0.45 0.21 ± 0.45 0.45 ± 0.43 0.18 ± 0.43 0.55 ± 0.33 0.11 ± 0.33 0.98 ± 0.32 0.10 ± 0.32 1.18 ± 0.26 0.07 ± 0.26

1,.1,.01,.001,.0001 0.46 ± 0.45 0.21 ± 0.46 0.45 ± 0.43 0.18 ± 0.43 0.55 ± 0.33 0.11 ± 0.33 0.98 ± 0.32 0.10 ± 0.32 1.18 ± 0.26 0.07 ± 0.26
.001,.01,.1,1,10 0.46 ± 0.46 0.21 ± 0.45 0.45 ± 0.43 0.18 ± 0.43 0.55 ± 0.33 0.11 ± 0.33 0.98 ± 0.31 0.10 ± 0.31 1.19 ± 0.25 0.06 ± 0.25

10

0,0,0,0,0 0.48 ± 0.51 0.26 ± 0.51 0.46 ± 0.47 0.22 ± 0.47 0.55 ± 0.37 0.14 ± 0.37 0.88 ± 0.37 0.14 ± 0.37 1.04 ± 0.31 0.10 ± 0.31
0.1,0.1,0.1,0.1,0.1 0.48 ± 0.51 0.26 ± 0.51 0.47 ± 0.47 0.22 ± 0.47 0.55 ± 0.37 0.14 ± 0.37 0.88 ± 0.37 0.14 ± 0.37 1.04 ± 0.31 0.10 ± 0.31
.0001,.001,.01,.1,1 0.48 ± 0.51 0.26 ± 0.51 0.47 ± 0.47 0.22 ± 0.47 0.55 ± 0.37 0.14 ± 0.37 0.88 ± 0.37 0.14 ± 0.37 1.04 ± 0.31 0.10 ± 0.31

10,1,1,1,1 0.52 ± 0.43 0.19 ± 0.43 0.52 ± 0.42 0.17 ± 0.42 0.64 ± 0.34 0.11 ± 0.34 0.91 ± 0.35 0.12 ± 0.35 1.07 ± 0.30 0.09 ± 0.30
10,10,10,10,10 0.51 ± 0.43 0.19 ± 0.43 0.50 ± 0.42 0.18 ± 0.42 0.62 ± 0.32 0.10 ± 0.32 0.94 ± 0.32 0.10 ± 0.32 1.10 ± 0.28 0.08 ± 0.28

50

0,0,0,0,0 0.49 ± 0.52 0.27 ± 0.52 0.48 ± 0.48 0.23 ± 0.48 0.55 ± 0.38 0.15 ± 0.38 0.71 ± 0.41 0.16 ± 0.41 0.78 ± 0.31 0.10 ± 0.31
.001,.01,.1,1,10 0.49 ± 0.51 0.26 ± 0.51 0.48 ± 0.47 0.22 ± 0.47 0.55 ± 0.37 0.14 ± 0.37 0.74 ± 0.38 0.15 ± 0.38 0.83 ± 0.28 .08 ± 0.28
.001,.1,1,10,50 0.50 ± 0.49 0.24 ± 0.49 0.49 ± 0.46 0.21 ± 0.46 0.57 ± 0.36 0.13 ± 0.36 0.83 ± 0.35 0.13 ± 0.35 0.95 ± 0.26 0.07 ± 0.26
50,50,50,50,50 0.61 ± 0.40 0.16 ± 0.40 0.63 ± 0.39 0.15 ± 0.39 0.70 ± 0.30 0.09 ± 0.30 0.91 ± 0.33 0.11 ± 0.33 1.00 ± 0.24 0.06 ± 0.24

Table 11. Performance of FairHetero for SHAKESPEARE Dataset with Different q and qm Values

q qm1-qm5
Group 1 Group 2 Group 3 Group4 Group 5

Mean Variance Mean Variance Mean Variance Mean Variance Mean Variance

0
0,0,0,0,0 1.82 ± 0.11 0.01 ± 0.11 1.91 ± 0.07 0.00 ± 0.07 1.98 ± 0.08 0.01 ± 0.08 2.14 ± 0.06 0.00 ± 0.06 2.23 ± 0.08 0.01 ± 0.08

0.1,0.1,0.1,0.1,0.1 1.82 ± 0.11 0.01 ± 0.11 1.92 ± 0.07 0.00 ± 0.07 2.00 ± 0.08 0.01 ± 0.08 2.15 ± 0.06 0.00 ± 0.06 2.24 ± 0.08 0.01 ± 0.08
1,1,1,1,1 1.92 ± 0.12 0.01 ± 0.12 2.03 ± 0.07 0.00 ± 0.07 2.11 ± 0.08 0.01 ± 0.08 2.24 ± 0.06 0.00 ± 0.06 2.32 ± 0.08 0.01 ± 0.08

0.001
0,0,0,0,0 1.82 ± 0.11 0.01 ± 0.11 1.91 ± 0.07 0.00 ± 0.07 1.98 ± 0.08 0.01 ± 0.08 2.14 ± 0.06 0.00 ± 0.06 2.23 ± 0.08 0.01 ± 0.08

.001,.001,.001,.001,.001 1.82 ± 0.11 0.01 ± 0.11 1.91 ± 0.07 0.00 ± 0.07 1.98 ± 0.08 0.01 ± 0.08 2.14 ± 0.06 0.00 ± 0.06 2.23 ± 0.08 0.01 ± 0.08
0.1,0.1,0.1,0.1,0.1 1.82 ± 0.11 0.01 ± 0.11 1.91 ± 0.07 0.00 ± 0.07 1.98 ± 0.08 0.01 ± 0.08 2.14 ± 0.06 0.00 ± 0.06 2.23 ± 0.08 0.01 ± 0.08

0.01
0,0,0,0,0 1.82 ± 0.11 0.01 ± 0.11 1.91 ± 0.07 0.00 ± 0.07 1.99 ± 0.08 0.01 ± 0.08 2.14 ± 0.06 0.00 ± 0.06 2.23 ± 0.08 0.01 ± 0.08

.01,.01,.01,.01,.01 1.82 ± 0.11 0.01 ± 0.11 1.91 ± 0.07 0.00 ± 0.07 1.99 ± 0.08 0.01 ± 0.08 2.14 ± 0.06 0.00 ± 0.06 2.23 ± 0.08 0.01 ± 0.08
0.1,0.1,0.1,0.1,0.1 1.82 ± 0.11 0.01 ± 0.11 1.92 ± 0.07 0.00 ± 0.07 1.99 ± 0.08 0.01 ± 0.08 2.15 ± 0.06 0.00 ± 0.06 2.24 ± 0.08 0.01 ± 0.08

0.1
0,0,0,0,0 1.83 ± 0.11 0.01 ± 0.11 1.92 ± 0.07 0.00 ± 0.07 1.99 ± 0.08 0.01 ± 0.08 2.15 ± 0.06 0.00 ± 0.06 2.24 ± 0.08 0.01 ± 0.08

0.1,0.1,0.1,0.1,0.1 1.83 ± 0.11 0.01 ± 0.11 1.93 ± 0.07 0.00 ± 0.07 2.01 ± 0.08 0.01 ± 0.08 2.16 ± 0.06 0.00 ± 0.06 2.25 ± 0.08 0.01 ± 0.08
1,1,1,1,1 1.94 ± 0.12 0.01 ± 0.12 2.04 ± 0.07 0.00 ± 0.07 2.12 ± 0.08 0.01 ± 0.08 2.25 ± 0.06 0.00 ± 0.06 2.34 ± 0.08 0.01 ± 0.08

1
0,0,0,0,0 1.95 ± 0.12 0.01 ± 0.12 2.06 ± 0.07 0.00 ± 0.07 2.14 ± 0.08 0.01 ± 0.08 2.26 ± 0.06 0.00 ± 0.06 2.35 ± 0.08 0.01 ± 0.08

0.1,0.1,0.1,0.1,0.1 1.98 ± 0.11 0.01 ± 0.11 2.07 ± 0.07 0.00 ± 0.07 2.16 ± 0.08 0.01 ± 0.08 2.29 ± 0.04 0.00 ± 0.04 2.36 ± 0.09 0.01 ± 0.09
1,1,1,1,1 2.11 ± 0.11 0.01 ± 0.11 2.20 ± 0.07 0.00 ± 0.07 2.29 ± 0.09 0.01 ± 0.09 2.41 ± 0.05 0.00 ± 0.05 2.47 ± 0.08 0.01 ± 0.08

References

[1] Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. 2022. Fedrolex: Model-heterogeneous federated learning with

rolling sub-model extraction. Adv. Neural Inf. Process. Syst. 35 (2022), 29677–29690.

[2] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia Smith,

and Ameet Talwalkar. 2018. Leaf: A benchmark for federated settings. arXiv:1812.01097.

[3] Sebastian Caldas, Jakub Konečny, H. Brendan McMahan, and Ameet Talwalkar. 2018. Expanding the reach of federated

learning by reducing client resource requirements. arXiv:1812.07210. Retrieved from https://arxiv.org/abs/1812.07210

[4] Yae Jee Cho, Andre Manoel, Gauri Joshi, Robert Sim, and Dimitrios Dimitriadis. 2022. Heterogeneous ensemble knowl-

edge transfer for training large models in federated learning. In Proceedings of the 31st International Joint Conference

on Artificial Intelligence (IJCAI) Main Track.

[5] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. 2020. Client selection in federated learning: Convergence analysis and

power-of-choice selection strategies. arXiv:2010.01243. Retrieved from https://arxiv.org/abs/2010.01243

[6] Alexandra Chouldechova and Aaron Roth. 2018. The frontiers of fairness in machine learning. arXiv:1810.08810. Re-

trieved from https://arxiv.org.abs/1810.08810

[7] Sen Cui, Weishen Pan, Jian Liang, Changshui Zhang, and Fei Wang. 2021. Addressing algorithmic disparity and per-

formance inconsistency in federated learning. Adv. Neural Inf. Process. Syst. 34 (2021), 26091–26102.

[8] Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. 2022. DisPFL: Towards communication-efficient

personalized federated learning via decentralized sparse training. In International Conference on Machine Learning.

PMLR, 4587–4604.

[9] Enmao Diao, Jie Ding, and Vahid Tarokh. 2021. HeteroFL: Computation and communication efficient federated learn-

ing for heterogeneous clients. In 9th International Conference on Learning Representations, (ICLR’21).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

https://arxiv.org/abs/1812.07210
https://arxiv.org/abs/2010.01243
https://arxiv.org.abs/1810.08810

5:30 Z. Talukder et al.

[10] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural architecture search: A survey. J. Mach. Learn.

Res. 20, 1 (2019), 1997–2017.

[11] Yahya H. Ezzeldin, Shen Yan, Chaoyang He, Emilio Ferrara, and A. Salman Avestimehr. 2023. Fairfed: Enabling group

fairness in federated learning. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 7494–7502.

[12] Jack Goetz, Kshitiz Malik, Duc Bui, Seungwhan Moon, Honglei Liu, and Anuj Kumar. 2019. Active federated learning.

arXiv:1909.12641.

[13] Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and Nicholas Lane. 2021.

Fjord: Fair and accurate federated learning under heterogeneous targets with ordered dropout. Adv. Neural Inf. Process.

Syst. 34 (2021), 12876–12889.

[14] Sohei Itahara, Takayuki Nishio, Yusuke Koda, Masahiro Morikura, and Koji Yamamoto. 2021. Distillation-based semi-

supervised federated learning for communication-efficient collaborative training with non-iid private data. IEEE Trans.

Mobile Comput. 22, 1 (2021), 191–205.

[15] Jakub Konečnỳ, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016. Federated optimization: Distributed

machine learning for on-device intelligence. arXiv:1610.02527. Retrieved from https://arxiv.org/abs/1610.02527

[16] Jakub Konečnỳ, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. 2016.

Federated learning: Strategies for improving communication efficiency. arXiv:1610.05492. Retrieved from https://arxiv.

org/abs/1610.05492

[17] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report.

[18] Tian Lan, David Kao, Mung Chiang, and Ashutosh Sabharwal. 2010. An Axiomatic Theory of Fairness in Network

Resource Allocation. IEEE, Los Alamitos, CA.

[19] Yann LeCun, Corinna Cortes, and C. J. Burges. 2010. MNIST Handwritten Digit Database. ATT Labs. Retrieved from

http://yann.lecun.com/exdb/mnist 2

[20] Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. 2021. Fedmask: Joint computation and

communication-efficient personalized federated learning via heterogeneous masking. In Proceedings of the 19th ACM

Conference on Embedded Networked Sensor Systems. 42–55.

[21] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair and robust federated learning through

personalization. In International Conference on Machine Learning. PMLR, 6357–6368.

[22] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated learning: Challenges, methods, and

future directions. IEEE Sign. Process. Mag. 37, 3 (2020), 50–60.

[23] Tian Li, Maziar Sanjabi, Ahmad Beirami, and Virginia Smith. 2019. Fair resource allocation in federated learning.

arXiv:1905.10497. Retrieved from https://arxiv.org/abs/1905.10497

[24] Xiaoli Li, Siran Zhao, Chuan Chen, and Zibin Zheng. 2023. Heterogeneity-aware fair federated learning. Inf. Sci. 619

(2023), 968–986.

[25] Tao Lin, Lingjing Kong, Sebastian U. Stich, and Martin Jaggi. 2020. Ensemble distillation for robust model fusion in

federated learning. Adv. Neural Inf. Process. Syst. 33 (2020), 2351–2363.

[26] Lingjuan Lyu, Xinyi Xu, Qian Wang, and Han Yu. 2020. Collaborative fairness in federated learning. Fed. Learn.: Priv.

Incentive (2020), 189–204.

[27] Lingjuan Lyu, Jiangshan Yu, Karthik Nandakumar, Yitong Li, Xingjun Ma, Jiong Jin, Han Yu, and Kee Siong Ng. 2020.

Towards fair and privacy-preserving federated deep models. IEEE Trans. Parallel Distrib. Syst. 31, 11 (2020), 2524–2541.

[28] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. 2017. Communication-

efficient learning of deep networks from decentralized data. In Artificial Intelligence and Statistics. PMLR, 1273–1282.

[29] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. 2021. A survey on bias and

fairness in machine learning. ACM Comput. Surv. 54, 6 (2021), 1–35.

[30] Hamid Mozaffari and Amir Houmansadr. 2022. E2FL: Equal and equitable federated learning. arXiv:2205.10454.

Retrieved from https://arxiv.org/abs/2205.10454

[31] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. 2018. Efficient neural architecture search via param-

eters sharing. In International Conference on Machine Learning. PMLR, 4095–4104.

[32] Bozidar Radunovic and Jean-Yves Le Boudec. 2007. A unified framework for max-min and min-max fairness with

applications. IEEE/ACM Trans. Network. 15, 5 (2007), 1073–1083. https://doi.org/10.1109/TNET.2007.896231

[33] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang. 2021. A compre-

hensive survey of neural architecture search: Challenges and solutions. ACM Comput. Surv. 54, 4 (2021), 1–34.

[34] Yuxin Shi, Han Yu, and Cyril Leung. 2023. Towards fairness-aware federated learning. IEEE Trans. Neural Netw. Learn.

Syst. (2023).

[35] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing federated learning on non-iid data with

reinforcement learning. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’20). IEEE,

1698–1707.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

https://arxiv.org/abs/1610.02527
https://arxiv.org/abs/1610.05492
http://yann.lecun.com/exdb/mnist
https://arxiv.org/abs/1905.10497
https://arxiv.org/abs/2205.10454
https://doi.org/10.1109/TNET.2007.896231

Hardware-Sensitive Fairness in Heterogeneous Federated Learning 5:31

[36] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2021. A novel framework for the analysis

and design of heterogeneous federated learning. IEEE Trans. Sign. Process. 69 (2021), 5234–5249.

[37] Su Wang, Mengyuan Lee, Seyyedali Hosseinalipour, Roberto Morabito, Mung Chiang, and Christopher G Brinton.

2021. Device sampling for heterogeneous federated learning: Theory, algorithms, and implementation. In Proceedings

of the IEEE Conference on Computer Communications (INFOCOM’21). IEEE, 1–10.

[38] Zheng Wang, Xiaoliang Fan, Jianzhong Qi, Chenglu Wen, Cheng Wang, and Rongshan Yu. 2021. Federated learning

with fair averaging. arXiv:2104.14937. Retrieved from https://arxiv.org/abs/2104.14937

[39] Dezhong Yao, Wanning Pan, Michael J. O’Neill, Yutong Dai, Yao Wan, Hai Jin, and Lichao Sun. 2021. Fedhm: Efficient

federated learning for heterogeneous models via low-rank factorization. arXiv:2111.14655. Retrieved from https://

arxiv.org/abs/2111.14655

[40] Han Yu, Zelei Liu, Yang Liu, Tianjian Chen, Mingshu Cong, Xi Weng, Dusit Niyato, and Qiang Yang. 2020. A fairness-

aware incentive scheme for federated learning. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society.

393–399.

Received 22 April 2024; revised 4 September 2024; accepted 24 October 2024

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. 10, No. 1, Article 5. Publication date: March 2025.

https://arxiv.org/abs/2104.14937
https://arxiv.org/abs/2111.14655

