
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 1

ATOM: A Grammar for Unit Visualizations
Deokgun Park, Steven M. Drucker, Roland Fernandez, and Niklas Elmqvist, Senior Member, IEEE

Abstract—Unit visualizations are a family of visualizations where every data item is represented by a unique visual mark—a visual
unit—during visual encoding. For certain datasets and tasks, unit visualizations can provide more information, better match the user’s
mental model, and enable novel interactions compared to traditional aggregated visualizations. Current visualization grammars cannot
fully describe the unit visualization family. In this paper, we characterize the design space of unit visualizations to derive a grammar that
can express them. The resulting grammar is called ATOM, and is based on passing data through a series of layout operations that divide
the output of previous operations recursively until the size and position of every data point can be determined. We evaluate the
expressive power of the grammar by both using it to describe existing unit visualizations, as well as to suggest new unit visualizations.

Index Terms—Visualization grammar, unit visualizations, declarative specification.

F

1 INTRODUCTION

Visualization encodes symbolic data into visual structures [1],
and arguably the most straightforward way to do this is to use
a direct mapping where each data item becomes a unique visual
mark. Such visualizations strictly maintain the identity of each
visual mark and its relation to a corresponding data item. Drucker
and Fernandez use the term unit visualizations to refer to this
family of visualization techniques, and prominent examples of
such techniques include unit charts, dotplots, and scatterplots [2].
In contrast, visualizations based on data aggregation—such as
barcharts, piecharts, or histograms—merge multiple data items
into inseparable graphic entities [3]. While such data abstraction
improves the scalability of the visual representation, it surrenders
the identity property of the visual marks, making it impossible to
distinguish individual data points in the visualization. Maintaining
the identity property, on the other hand, allows for many novel
interactions not possible using an aggregating visualization, such
as querying individual data points, tracking their movement during
transitions, and filtering on an item level. While many useful
visualizations that exhibit these properties exist, to date, this type
of visualization has not yet been classified as a unique category,
and their design space has not been systematically explored.

In this paper, we address this gap in the literature by presenting
ATOM, a high-level grammar for unit visualizations based on a
structured exploration of their design space. ATOM uses a sequence
of recursive layout operations that organize the output of previous
operations until the size and position of each data point can be
determined, as shown in Figure 1. In our implementation, Atom
specifications are standard JSON objects that are ingested by the
Atom engine and then rendered as Scalable Vector Graphics in a
modern web browser.

We validate the ATOM grammar using a two-pronged strategy.
First, we use ATOM to replicate existing unit visualizations, such
as barcharts, mosaic plots, dotplots, and density plots (Figure 2).
This approach demonstrates the expressive power of the grammar.
Second, we use ATOM to create new unit visualization techniques.

• Deokgun Park and Niklas Elmqvist are with the University of Maryland,
College Park, MD, USA. E-mail:{intuinno, elm}@umd.edu.

• Steven M. Drucker and Roland Fernandez are with Microsoft Research.
E-mail: {sdrucker, rfernandez}@microsoft.com.

This yields a number of previously unknown visualizations that
may be useful to explore further, and proves that our grammar also
has significant generative power.

The remainder of this paper is structured as follows: We first
define and discuss unit visualizations and their difference from
visualizations that use aggregation. We then review the literature
on current unit visualizations and visualization grammars. This
leads to our design space of unit visualizations and a grammar for
describing them. We validate our work with several examples of
existing as well as novel unit visualizations. Finally, we discuss the
Atom grammar in contrast to existing visual grammars and derive
guidelines for how to best use them. We close the paper with our
conclusion and our plans for future work.

2 AGGREGATED VS. UNIT VISUALIZATIONS

We define unit visualizations as visualizations that maintain the
identity property of its visual marks, i.e., where each visual mark
is a unique entity that is associated with a corresponding unique
data item. The identity property means that for every data item
in the data table, there is a corresponding visual mark in its
visualization. While the unit visualization family has not yet been
properly categorized in the visualization field, there nonetheless
exist several examples of effective unit visualizations, such as unit
charts, dotplots, and scatterplots.

Maintaining the identity property can lead to visual clutter
for large datasets. To combat this, many visualization techniques
are based on data abstraction, such as aggregation, segmentation,
or filtering [4]. Instead of maintaining an absolute one-to-one
mapping between data items and visual marks, these abstracted
or aggregated visualization techniques merge multiple data items
into visual aggregates that can no longer be separated, and where
the identity property thus does not hold. Examples of aggregated
visualizations are barcharts, piecharts, and histograms.

In this section, we contrast unit visualizations to aggregated
visualizations in an effort to identify the areas in which using a unit
visualization can be advantageous. Analogously, we also recognize
situations where unit visualizations provide limited utility.

2.1 Strengths of Unit Visualizations
Unit visualizations have the following advantages over traditional
aggregated visualizations:

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 2

The Survivors of Titanic by Passenger Class

RootContainer

{all the passengers of Titanic}

Container

{1st class}
Container

{2nd class}

Container

{3rd class}

Fig. 1. Sequence of layout operations to generate a unit column chart for survivors of the Titanic by passenger class.

• Intuition: The identity property ensures that there is a
one-to-one mapping between data points and visual marks,
which is a simple bijective function that minimizes the need
for the user to consider data abstraction when interpreting
the visualization. This also allows detecting outliers in a
subgroup. As an example, Figure 2(c) shows Miss Helen
Loraine Allison, who was the only child in first and second
class to die.

• Perception: Maintaining item identity allows for tracking
items during animated transitions and interaction. While
there is a limit to the number of objects that humans can
reliably track [5], [6], this property nevertheless allows a
user to follow a selected item during a transition [7] and to
get the overall gist of where groups of items are moving.
This property can also be used for visual sedimentation [8],
where data items are accumulated over time.

• Constructivism and physicality: Correlating a unique
visual mark with a unique data item conforms to how
novices think about and construct visual representations
using physical tokens [9].

• Interaction: The identity property ensures that users can
get details on demand for each individual data item [10].
Furthermore, filtering can be performed on a per-item
level, with animations showing visual marks appearing
or disappearing from the display.

2.2 Weaknesses of Unit Visualizations

On the other hand, there are disadvantages associated with unit
visualizations that should be considered during design:

• Computational scalability: A key limitation for unit
visualization is the scalability of the hardware platform [3],
i.e., the memory, computation, and rendering performance
associated with managing unique visual marks for all data
items. For truly large datasets, or for hardware platforms
with limited capabilities—such as smartphones, tablets, and
smartwatches—this can become a limiting factor against
adopting a unit visualization.

• Display scalability: A unit visualization is only useful if
individual visual marks can be distinguished. This means
that there is a limit to how small each visual mark can
be relative to the screen resolution or physical size of the
display it is being visualized on.

• Perceptual scalability (visual clutter): Finally, the human
visual system is limited in the number of objects that it can
perceive [3], let alone track [5], [6]. While clutter reduction
is an important research topic in visualization [11], most of
these techniques are based on mechanisms that are in direct
conflict with the identity property of unit visualizations,
including aggregation, sampling, and summarization. While
some of these issues concern cases with a large number
of data objects, there are also issues with using unit
visualizations for a very small number of data objects,
where empty space and aliasing can make comparison
difficult. For some tasks, such as comparing proportions,
aggregated visualizations—such as stacked bar charts—
may be superior if there are small numbers of data objects.

3 RELATED WORK

Even though the term unit visualizations is somehwat novel, many
unit visualizations have been proposed in the past. In this section,
we review these techniques and explain why previous visualization
grammars are insufficient for describing them. Table 1 gives a
representative sampling of visual representations and visualization
systems that can be construed as unit visualizations.

3.1 Unit Visualizations
Having a bijective mapping between rows of data and visual marks
is arguably the simplest method to generate visualizations in the
same sense as how we first learn to represent numbers as children by
counting fingers on a hand. A simple extension of finger counting
is to use visual shapes to represent data as tallies, where evidence
of their use has been found as early as the upper Paleolithic eras.
Neurath used multiple repetitive icons to represent quantities of
information in his ISOTYPE work in the early 1930’s [12]. Waffle
charts or square pie charts uses a square matrix and fills the portion

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 3

(a) (b) (c)

3rd

2nd

1st

3rd

2nd

1st

Survived
Yes NoClass

Age

3rd2nd1st
Class

F

M

F
M

F
M

Helen Loraine Allison

Fig. 2. Example unit visualizations authored using the Atom grammar for the Titanic dataset: (a) Unit barchart for passenger class; (b) unit mosaic plot
for passenger class, survival, and gender; and (c) unit violin plot for age distribution faceted by passenger class. In each chart, blue dots represent
the people who survived and red dots represent those who did not.

grid with colors to show the compositions of data while keeping
individual points. More recently, Huron et al. has examined how
tokens can be used to help teach basic visualization literacy [9],
[13]. However, in these cases, the individual blocks are physical
representations of numerical quantities rather than an individual
data table row. Previous visualizations have delivered the numerical
information effectively for print media. But the development of
interactive visualizations leads to a more extreme approach tying
visual marks to data. Representing each data row as a visual mark
and interactively rearranging them to find patterns have been used
in exploratory business analytics in commercial software [2] and
in classroom environments [14].

When the dimensions associated with data increases, visualiza-
tions can map these additional attributes to visual variables [15]
such as position, shape, or area of a visual mark. The simplest
version of this, the scatterplot, has been in use since the mid-17th
Century. Other examples include bubble charts [16], popularized
by Hans Rosling in his Gapminder work.

When not directly mapping the position of marks using data,
marks can be “packed” onto the screen. Examples of this range
from Wilkinson’s dotplots [17] to Keim’s pixel charts [18]. Much
of this work tends to blur the distinction between aggregate-based
visualizations and unit-based visualizations, where the units are
laid out in a way that reveals both the individual units themselves
as well as the overall statistical structure of the data.

While unit representations in static visualizations might be
useful for their simplicity, interaction and animation provide
opportunities to highlight some of the utility that the individual
representation of each row affords [2], [19], [20], [21]. These
interactive multidimensional visualization systems maintain object
identity during interactive visual exploration such as axis changes,
filtering, brushing, and selection. Representative examples of unit
visualizations are shown in Figure 3.

Unit visualizations have arisen naturally in the visualization
community; therefore, many variations have been developed in
an ad-hoc fashion based on heuristics or the authors’ intuition.
This paper extracts the common factors in these unit visualization
representations and creates a general framework so that both the
description of existing visualizations and the design of novel
ones can take a more systematic approach. As grammars for
visualizations have been successful in unifying many disparate
visualization types [22], we use a similar approach for unit
visualizations with the goal of achieving more formal mathematical
rigor.

3.2 Grammars for Visualizations

Visualizations can be constructed using tools at various levels of
abstraction. To support programming visualizations from scratch,
many libraries have been proposed that provide basic primitives,
including Prefuse [31], Processing [32], D3 [33], and Protovis [34].
However, programming falls outside the reach of many people, and
requires undue focus on implementation details rather than freeing
the designer to focus on the visual representation. Furthermore,
new visualizations cannot as a rule be enumerated using a general-
purpose programming language.

Declarative languages decouple the specification from the
execution [35], [36], and using a declarative visualization grammar
allows for simpler description as well as enabling enumeration
of legal visual representations. Many declarative visualization
grammars have been introduced with distinct goals: some have
lower levels of abstraction allowing more expressiveness, while
others offer more simplicity. Examples of these pure declarative
methods include ggplot2 [37], ggvis [38], Vega [36], Reactive-
Vega [39], and Vega-Lite [40].

One of the first examples of this grammar-based approach to
visualization was Wilkinson’s “Grammar of Graphics” (GoG); an
abstraction that makes thinking, reasoning, and communicating
about graphics much easier [22]. Building upon these notions,
ggplot2 is a widely-used R package for visualizations that im-
plements GoG [37]. However, GoG and ggplot2 are focused on
visual specification and do not provide the interaction operations
necessary for truly interactive graphics.

Vega [36] extended the specification of visual representa-
tions with support for modeling the interaction design. Reactive
Vega [39] provided a robust implementation of this in the Vega
grammar based on event-driven reactive functional programming.
However, even declarative grammars tend to be verbose, making it
time-consuming and difficult for novices to construct visualizations.
Therefore, Vega-Lite [40] was developed to sacrifice some of the
expressiveness of Vega while gaining easier use.

Beyond general-purpose visualization grammars, also domain-
specific grammars have been developed for specific types of
visualizations. Product plots by Wickham and Hofmann can
generate more than 20 statistical graphics by the combination
of a few primitives for absolute counts or relative proportions [41].
Baudel and Broeksema [42] describe the design space of sequential
space-filling layout, including many variants of treemaps [43],
mosaic plots [44], and pixel bar charts [44], with five independent
dimensions. MacNeil and Elmqvist [45] propose a view specifi-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 4

-4± 1

Minimize

Maximize

-2± 1

Minimize

Maximize

1± 1

Minimize

Maximize

3± 1

Minimize

Maximize

5± 1

Minimize

Maximize

8± 1

Minimize

Maximize

10± 1

Minimize

Maximize

12± 1

Minimize

Maximize

14± 1

Minimize

Maximize

17± 1

Minimize

Maximize

3± 3
MinimizeMinimizMinimizMinimizeMinimizeMinimize MaximizeMaximizeMaximizeMaximizMaximizeMaximizeMaximizMaximizMaximizimizeMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizeMaximizeMaximizMaximizeMaximizMaximizeMaximizeMaximizMaximizeMaximizeimizeMaximizMaximizimizeimizeimizeMaximizMaximizimizeimizeimizeimizeMaximizMaxMax

10± 3
MinimizeMinimizMinimizMinimizeMinimizeMinimizMinimizMinimizeMinimizeMinimize MaximizeMaximizMaximizeMaximizMaximizMaximizMaximizimizeimizeMaximizeMaximizMaximizMaximizimizeMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizeMaximizMaximizeMaximizeMaximizeMaximizeMaximizeimizeMaximizimizeMaximizMaximizMaximizimizeimizeimizeMaxMaxMaxMaximizMaximiz

16± 3
MinimizeMinimizMinimizeMinimizMinimizeMinimize MaximizeimizeMaximizeMaximizMaximizMaximizimizeMaximizimizeMaximizMaximizMaximizeMaximizeMaximizimizeMaximizMaximizMaximizMaximizMaximizMaximizMaximizeMaximizeMaximizeMaximizMaximizMaximizeMaximizeMaximizimizeimizeMaximizMaximizMaximizimizeMaximizimizeMaximizMaximizMaximizMaxMaxMaximiz

23± 3
MinimizeMinimizeMinimizeMinimize MaximizeMaximizMaximizeMaximizMaximizMaximizMaximizMaximizMaximizeMaximizMaximizeMaximizeMaximizeimizeimizeimizeimizeimizeMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizeMaximizeMaximizMaximizeMaximizeMaximizeMaximizeMaximizMaximizMaximizimizeimizeimizeimizeMaximizMaxMaxMaximizMaximiz

29± 3
MinimizeMinimizMinimizMinimizMinimizeMinimizeMinimizeMinimizMinimizeMinimize MaximizeMaximizeimizeMaximizMaximizMaximizMaximizMaximizMaximizeMaximizMaximizeMaximizeimizeimizeMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizeMaximizeMaximizeMaximizMaximizeMaximizeMaximizMaximizMaximizeMaximizMaximizeMaximizeimizeimizeimizeimizeimizeMaximizMaximizMaximizMaximiz

36± 3
MinimizeMinimizMinimizeMinimizMinimizeMinimize MaximizeMaximizMaximizMaximizMaximizMaximizMaximizimizeimizeimizeMaximizMaximizMaximizMaximizeMaximizeMaximizMaximizMaximizeMaximizeimizeMaximizMaximizMaximizMaximizMaximizMaximizeMaximizeMaximizeMaximizeMaximizeMaximizMaximizeMaximizMaximizeMaximizeMaximizimizeimizeimizeimizeMaximizMaximizMaximizMaximizMaxMaxMaximiz

43± 3
MinimizeMinimizMinimizMinimizeMinimizeMinimizMinimizMinimizeMinimize MaximizeimizeMaximizeMaximizeimizeMaximizeMaximizMaximizimizeimizeMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizeMaximizeMaximizeMaximizMaximizMaximizeMaximizeMaximizimizeMaximizimizeimizeimizeMaximizimizeMaximizMaximizimizeimizeMaximizMaxMaxMaximizMax

49± 3
MinimizeMinimizeMinimizeMinimizMinimizeMinimize MaximizeMaximizeimizeimizeMaximizMaximizMaximizMaximizimizeMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizeMaximizeMaximizeMaximizMaximizMaximizeMaximizeMaximizeMaximizeMaximizMaximizeMaximizeMaximizeMaximizeimizeimizeimizeimizeimizeMaximizMaximizMaximizMaximizMaximizMaximizMaxMaxMax

56± 3
MinimizeMinimizMinimizeMinimizeMinimizMinimizMinimizMinimizeMinimize MaximizeMaximizMaximizeMaximizMaximizMaximizMaximizeMaximizMaximizMaximizMaximizeMaximizMaximizeMaximizimizeimizeMaximizMaximizMaximizMaximizMaximizMaximizMaximizMaximizeMaximizeMaximizeMaximizMaximizMaximizMaximizeMaximizeMaximizMaximizeMaximizeimizeMaximizMaximizMaximizimizeimizeimizeimizeimizeimizeMaxMaximizMax

62± 3
Minimize Maximize

(a) (b) (c)

(e) (g) (h)

(i) (j)

(k) (l) (m)

(d)

(f)

Fig. 3. Examples of unit visualizations. (a) Tallies; (b) ISOTYPES [12]; (c) Circle packing [16]; (d) Kinetica [21]; (e) Beeswarm [23]; (f) Dust &
Magnet [24]; (g) Hierarchical axes [25]; (h) Stacker [26]; (i) Visual sedimentation [8]; (j) SandDance [27]; (k) Gatherplots [28]; (l) Squares [29]; (m)
Past Visions [30].

cation grammar for slicing and dicing datasets and visual space
into mosaics similar to Atom, but their grammar operates at the
granularity of individual visualization techniques in the resulting
tiles. Overall, there is a tradeoff between the compactness of the
domain-specific grammar versus its expressivity. Atom adds several
primitives in order to support a wider set of possible visualizations
than many of the grammars discussed above.

3.3 Contributions

According to our survey, existing declarative grammars are cur-
rently insufficient for describing the class of unit visualizations we
have identified in this paper. To date, only low-level programming

libraries such as D3 can be used to describe unit visualizations, and
this must be done directly at the mark placement level.

The grammar we propose in this work, Atom, incorporates
many of the concepts of Wilkinson’s Grammar of Graphics [22],
such as mark selection, statistical calculation, and aesthetics.
However, in the Grammar of Graphics, only collision modifiers
such as dodging and stacking are used to avoid the overlapping,
which limits the range of potential layouts, whereas Atom provides
more sophisticated such operators. Also, in contrast to GoG-style
grammars, which tend to specify layouts implicitly based on mark
choice, visualizations in Atom emerge from a combination of
low-level grouping and primitive layout operations. In this way,
Atom has more in common with rule-based layout systems such as

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 5

graftals and L-systems [46].

4 DESIGN SPACE OF UNIT VISUALIZATIONS

A visualization grammar should be able to express the design space
of the visualization type with minimal specification. In this section,
we explore the design from the perspectives of visual space, layout,
and mark representation. We focus on static representations in this
paper, leaving a survey of animation and interaction patterns for
unit visualizations as future work.

4.1 Visual Space

The visual space dimension determines the visual coordinate
system, and typically includes 1D, 2D, and 3D coordinate systems.
It is important to distinguish between data dimensions and visual
dimensions. For example, a dotplot represents one data dimension
but requires 2D visual space. Similarly, a treemap of a single level
uses a single data dimension, but requires 2D visual space. When
the input data is 2D, 3D visual space can be used; for example, in
3D dotplots [26].

4.2 Layout

The layout strategy decides the positioning of visual marks for each
data object. We identify two fundamental types of layout strategies
for unit visualizations: overlapping and non-overlapping layouts.

Overlapping layouts allow visual marks to intersect on the
display. This means that the position and shape of the marks are
independent, i.e., they can be arranged on the display without
considering other marks. A scatterplot, which is one of the most
widely used types of statistical graphics, is an example of an
overlapping layout [50]. While simple and effective, scatterplots
suffer from overplotting—where two or more marks partially
or completely overlap—when one of the variables mapped to
position is categorical or countable. Even when both variables in a
scatterplot are continuous numbers, large or locally dense datasets
can yield overplotting. Previously, jittering—where occluded points
are translated from their original positions to become visible—
was used for categorical variables [22], [51] to intelligently
reduce point occlusion [52], or separated using user-controlled
attractors [24]. Overplotting defeats much of the potential benefits
of unit visualizations, in that individual points obscure other points,
thus preventing judgment about overall numbers and individual
interactions. Conceptually, however, overplotting “fits” within a
unit specification. In vector file formats such as SVG, the dots are
still in the file’s contents, even though they are not visible. These
hidden units can be revealed by changing the transparency property
of each individual marks in some cases when the overlapping is
not severe. Even though we allow overlapping layouts such as
Mapping (as shown in Figure 4) in unit visualizations, we may
wish to avoid overlap and non-overlapping or space-filling layouts
are very common in existing unit visualizations.

Non-overlapping (or space-filling [50]) layouts remove over-
plotting by organizing visual marks disjointly in visual space.
However, avoid overlapping requires developing methods to
properly partition and organize the output visual spaces. Usually
the position and shape of marks depend on the input domain and
output range at the same time. For example, given a rectangular
unit representation in 2D visual space, the layout algorithm must
calculate four parameters for each visual mark—position (x,y) and

dimension (width,height)—under the constraints that each mark
should be disjoint from other marks.

Non-overlapping layouts can be further specialized to reduce
the number of possible layouts and enable efficient comparison
among visual marks into two common patterns: subdividing and
packing. Subdividing fixes one visual dimension such as width or
height to be that of the entire visual space, so that the remaining
dimension can be determined by the data property. Because one
dimension is maxed out, positioning becomes a trivial matter of
sorting. Packing, on the other hand, lays out a visual mark—either
a square or circle—in an 1:1 aspect ratio. Squarified treemaps [43]
or circle packing [53] are examples of a packing layout. Beeswarm
plots [23] enable more efficient, non-overlapping arrangements of
points in a scatterplot. Hieraxes [25] avoids overplotting of visual
marks by stacking them to resemble fluctuation diagrams. Finally,
new packing layouts are based on physicalization, such as the
Kinetica [21] and TouchViz [20] systems, which both use visual
marks that resemble physical objects by occupying space and being
affected by gravity.

4.3 Mark Representation
The visual representation of individual marks can either be a static
predefined geometry or used as a visual variable mapped by data
properties. Rectangles are the most common representation for
non-overlapping layouts in that they require minimal parameters
to fix in the visual space and are easy to partition recursively.
Because non-overlapping unit visualizations show all the data
without overlap, images can be used as marks. Circles also have
been commonly used for both overlapping and non-overlapping
layouts, and are particularly common in scatterplots and dotplots.

5 ATOM: A UNIT VISUALIZATION GRAMMAR

Above we explored the design space of existing unit visualizations
and abstracted the underlying principles, especially the layout
operations that differentiate unit visualizations with aggregated
visualizations. The grammar we propose in this paper, ATOM,
is based on this survey, and enables the specification of various
visualizations into succinct orthogonal grammar components. Its
name, Atom, is obviously derived from the Greek word atomos,
meaning indivisible, in the sense that a visual mark in unit
visualizations are not separable.

Unit visualizations are intended for multidimensional datasets.
We can represent a multidimensional dataset as a set D , where each
member o is an data object or a row in a data table with attributes
a1,a2, . . . ,am, where m is the number of attributes in the dataset.
The visual space is a set V , which is composed of all points p
in the theoretical space. It is different from a physical canvas on
the display, where the visualization is drawn. For example, we can
map a small portion of visual space on the whole output display to
zoom in a specific part of visualization. We define a container C
as a tuple of (Dc ⊆D ,Vc ⊆ V). The root container is a container
where the data is the entire dataset, and the canvas is the entire
visual space. A cell, on the other hand, is a container whose set Dc
contains only one element.

A unit visualization operation is an operation that generates a set
of subcontainers {(Do1 ,Vo1),(Do2 ,Vo2), . . . ,(Don ,Von)} as output
given container Ci = (Di,Vi) as an input, where the data Doi and
the spatial domain Voi satisfies Doi ⊆Di and Voi ⊆Do. Hence, a
unit visualization operation is composed of two suboperators in
the data domain and spatial domain, respectively. Given the parent

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 6

TABLE 1
Classification of existing unit visualizations in the literature.

Layout Coordinate System Unit

Name Author Year G
ri

d

Pa
ck

M
ap

2D

Ph
ys

ic
al

iz
at

io
n

Tr
ee

m
ap

(2
D

)

Fi
ll

(1
D

)

R
ec

ta
ng

ul
ar

C
ar

to
gr

ap
hi

c

Po
la

r

2D 3D G
eo

m
et

ri
c

sh
ap

e

Ic
on

Im
ag

es

Fig.
Tallies Unknown –

√ √ √ √
3 (a)

Scatterplots Unknown 1600s
√ √ √ √

Choropleths Dupin 1826
√ √

Stem and leaf Bowley 1900s
√ √ √ √ √

Isotypes [12] Neurath 1936
√ √ √ √ √

3 (b)
Pixel bar charts [18] Keim et al. 1999

√ √ √ √ √

Dotplot [17] Wilkinson 1999
√ √ √ √ √

Hierarchical axes [25] Shneiderman 2000
√ √ √ √

3 (g)
Quant. treemaps [47] Bederson 2001

√ √ √ √ √ √

Dust and Magnet [24] Yi et al. 2005
√ √ √ √

3 (f)
Circle packing [16] Wang 2006

√ √ √ √
3 (c)

Bubble chart [48] Rosling 2007
√ √ √ √

ScatterDice [19] Elmqvist et al. 2008
√ √ √ √

PivotViewer MS Livelabs 2009
√ √ √ √ √ √

Stacker [26] Dang et al. 2010
√ √ √ √ √

3 (h)
SandDance [2] Drucker et al. 2012

√ √ √ √ √ √ √ √ √
3 (j)

Histomages [49] Chevalier 2012
√ √ √ √ √

Kinetica [21] Rzeszotarski 2013
√ √ √ √

3 (d)
Constructive vis. [13] Huron et al. 2014

√ √ √ √ √ √

Gatherplots [28] Park et al. 2014
√ √ √ √ √ √ √

3 (k)
Visual sediment [8] Huron et al. 2014

√ √ √ √ √ √
3 (i)

Phys. token vis. [9] Huron et al. 2014
√ √ √ √ √ √ √

Beeswarm plots [23] Eklund 2015
√ √ √ √ √ √

Past Visions [30] Dörk 2016
√ √ √ √ √

3 (m)
Squares [29] Ren et al. 2016

√ √ √ √ √
3 (l)

container, the data domain operation divides a dataset of parent
container into a set of datasets for child containers. Based on our
design space, these are the most common such operations:

• BIN: Partitioning of D according to the values of attributes
such that all subsequent child groups will contain the
different values of an attribute;

• DUPLICATE: Duplicate D into subcontainers;
• FILTER: Partition according to a given condition such that

one group contains data object that meets the condition and
the other group contains the remainder; and

• FLATTEN: Partition so each subcontainer has a single item.

The spatial domain operation splits the parent space into child
spaces and assigns them to the output datasets of the data domain
operation to produce the child containers. We list the most common
spatial domain operations in Figure 5.

To produce the target visualizations, our grammar builds a root
container and recursively applies unit visualization operations until
all containers become cells. In other words, rendering becomes a
tree traversal, where the root container is the root of the tree and
the cell containers are leaves. Once all cells have been generated,
the layout is complete and the visualization can be drawn.

These recursive layout operations are inspired by the layout
process of product plots [41]. Atom can be thought of as closely
related to product plot because space-filling layouts are quite similar
to the composition rule of product plots. However, overlapping
plots such as scatterplots are not within the scope of product plots,
and Atom adds a cell operation at the end of layout operations,
making all data points unique visual marks.

The Atom grammar is formally defined as G = (V,ΣΣΣ,R,S),
where V is a set of variables, ΣΣΣ is a set of terminals, R is a set of
production rules, and S is a start symbol.

Here are the production rules R in BNF notation [54]:

〈Start〉 ::= 〈Root〉〈Layouts〉〈Marks〉 (1)

〈Root〉 ::= DATA CANVAS (2)

〈Layouts〉 ::= 〈Layout〉|〈Layout〉〈Layouts〉 (3)

〈Layout〉 ::= 〈DataOp〉〈VisualPolicy〉 (4)

〈DataOp〉 ::= 〈BinOp〉|DUPLICAT E|〈FilterOp〉|FLAT T EN
(5)

〈BinOp〉 ::= BIN|BIN BINSIZE (6)

〈FilterOp〉 ::= FILT ER CONDIT ION (7)

〈VisualPolicy〉 ::= 〈VisualOp〉〈Size〉〈isShared〉 (8)

〈VisualOp〉 ::= MAP2D|FILLX |FILLY |MAXFILL|PACK
(9)

〈Marks〉 ::= 〈Size〉〈Shape〉〈Alignment〉〈isShared〉 (10)

〈Size〉 ::=UNIFORM|〈SizeFunc〉 (11)

〈SizeFunc〉 ::=COUNT |SUM VAR (12)

〈Shape〉 ::=CIRCLE|RECTANGLE (13)

〈isShared〉 ::= T RUE|FALSE (14)

A visualization can be defined by specifying the root container
〈Root〉, the layout operations, and how individual marks will be
represented, as shown in Rule (1). The root container requires
the data and the associated canvas for visualization (Rule (2)).
Rule (3) states that there can be one or more layouts. Each layout

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 7

Map2D
Size: Uniform

FillX
Size: Uniform

FillY
Size: Uniform

MaxFill
Size: Uniform

Pack
Size: Uniform

Map2D
Size: Count, Sum

FillY
Size: Count, Sum

FillX
Size: Count, Sum

MaxFill
Size: Count, Sum

Pack
Size: Count, Sum

Fig. 4. Visual representations of example operations (VisualOp) and the resulting subcontainers for unit visualizations.

Layout

Overlapping Space-filling

Subdivision PackingMap2D

1D
fillX, fillY

2D
Treemap

Grid
pack, maxfill

Physicalization

jittering

Fig. 5. Common layout operations for unit visualizations.

is composed of a data operation and visual policy (Rule (4)).
Available data operations are shown in Rule (5). The BIN operation
can be performed according to attribute values in the case of
nominal variables, and can have an optional BINSIZE parameter
that indicates the number of bins in the case of continuous variables,
as in Rule (6). A visual policy is composed of a visual operation,
size setting, and the 〈isShared〉 setting (Rule (8)). Size can be
either uniform or a function of the contents (Rule (11)). Figure 4
shows operations in the Atom grammar with the variable size vs.
uniform size. If type is sum, it can have an additional key parameter
that will determine the variables to be summed (Rule (12)).

Finally, a visual mark is specified using geometric attributes.
The available attributes are simple because a single mark is drawn
on a cell container, where there is only one data object.

As a concrete example, we will use the Titanic dataset to
explain how our unit grammar can draw the unit column chart in
Figure 6. The root container is the container, where D is a set
that contains all the people on the Titanic, and V is given as the
whole canvas to draw. The pack aspect ratio can lead to wasted
space, especially when there is a small number of data points inside
a container. To resolve this, we use maxfill to find an optimal
aspect ratio that is close to pack while removing empty space.

5.1 Shared Property

Operations in Atom have a sharing setting to control the input
domains for the visual variable calculation. Sharing can be applied

to both data operations and visual operations. This is needed when
a child container does not have all the information to be properly
laid out, and information from siblings is required.

As a concrete example, in Figure 7 a container containing 1st

Class passengers would like to apply the second layout operation
of (Flatten,PackXY). However, it does not know what should be
the size of the cell container, because it has only information about
the number of 1st Class passengers. To calculate the size of a cell
size, it has to know the number of objects in the most crowded
container, here 3rd Class passengers. Sharing is a mechanism to
synchronize the operation among the sibling containers.

When sharing is enabled, the input domains are shared among
siblings. Otherwise, the input domain is limited to the current
container. For example, Figure 7 shows that by changing the sharing
settings of the size variable, we can create absolute and relative
versions of the Titanic passengers faceted among class. Sharing
settings are hierarchical, meaning that each level can have its own
sharing configuration on or off, and these affect to what extent the
domain is shared as shown in Figure 8. A useful way to understand
the sharing flag is thinking of it as a way to specify whether the
container should be “absolute” or “relative” with sibling containers.

5.2 View Composition

Existing grammars, such as Vega-Lite [40] or Grammar of
Graphics [22], use a separate view composition algebra to construct
multiple views. In Atom, no such view composition operators are
needed; we can instead use the existing layout operations to build
small multiple charts and multiple views.

More specifically, to generate a faceted chart in Atom, where
data is separated across multiple views, we can use the BIN operator
to partition the data into the separate regions. For a repeated chart,
where the same data is replicated across multiple representations,
we can use DUPLICATE to disseminate the data to all views.

5.3 Implementation Details

Our implementation of Atom is built in JavaScript using D3 [33]
and Scalable Vector Graphics (SVG) [55]. The core part of the code
is 1,186 lines. A website with more examples and an interactive
editor is available at https://intuinno.github.io/unit, and the software
is available as open source. Extensibility is an important aspect of

https://intuinno.github.io/unit

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 8

{

 "data": "data/titanic.csv",

 "width": 320, "height": 240, "padding": {..},

 "layouts": [{

 "name": "layout1",

 "type": "gridxy",

 "subgroup": { "type": "groupby", "key": "Class" },

 "aspect_ratio": " llX",

 "size": { "type": "uniform", "isShared": false },

 "direction": "LRBT", "align": "LB",

 "margin": { ... }, "padding": {... }

 }, {

 "type": "gridxy",

 "subgroup": { "type": "groupby", "key": "Gender", "isShared": true },

 "aspect_ratio": " llY",

 "size": { "type": "uniform", "isShared": true },

 }, {

 "subgroup": { "type": "!atten" },

 "aspect_ratio": "square",

 "size": { "type": "uniform", "isShared": true },

 "sort": { "key": "Survived"}

 }],

 "mark": {

 "shape": "circle",

 "color": { "key": "Survived", "type": "categorical" },

 "size": { "type": "max", "isShared": false },

 "isColorScaleShared": true

 }

}

{

 "data": "data/titanic.csv",

 "width": 320, "height": 240, "padding": {..},

 "name": "layout1",

 "type": "gridxy",

 "subgroup": { "type": "groupby", "key": "Class" },

 "aspect_ratio": " llX",

 "size": { "type": "uniform", "isShared": false },

 "direction": "LRBT", "align": "LB",

 "margin": { ... }, "padding": {... }

 "type": "gridxy",

 "subgroup": { "type": "groupby", "key": "Gender", "isShared": true },

 "aspect_ratio": " llY",

 "size": { "type": "uniform", "isShared": true },

 "subgroup": { "type": "!atten" },

 "aspect_ratio": "square",

 "size": { "type": "uniform", "isShared": true },

 "sort": { "key": "Survived"}

 "mark": {

 "shape": "circle",

 "color": { "key": "Survived", "type": "categorical" },

 "size": { "type": "max", "isShared": false },

 "isColorScaleShared": true

Root Container

Layout 1

Layout 2

Layout 3

Draw Shape

1st

Male

Crew3rd2nd

Female

Fig. 6. Example grammar to generate a unit column chart for survivors of the Titanic by passenger class.

{ ...,

 "layouts": [{

 "subgroup": { "type": "groupby", "key": "pclass" },

 "aspect_ratio": "�llX",

 }, {

 "name": "layout2",

 "type": "gridxy",

 "subgroup": { "type": "�atten" },

 "aspect_ratio": "max�ll",

 "size": { "type": "uniform", "isShared": ? }

}]

 "mark": {

}

"isShared": ? }

isShared: true isShared: false

(a) (b)

Fig. 7. Unit visualization for the Titanic dataset. By varying the sharing
flag of the size variable for the second packing layout, we can create both
absolute and relative versions. In (a) we can see that the least number of
second class passengers survived (absolute count), but (b) shows that
third class passengers had the least (relative) chance of survival.

grammars, where users can add various layout functions such as
packing algorithms for polar or three-dimensional coordinates. We
leave for future work refactoring of the code base to better support
such extensibility.

6 EVALUATION

Given our terminology of unit vs. aggregated visualization, we
here discuss when unit visualizations are appropriate. We will also
discuss their limitations and strategies to overcome these.

{ ...,
 "layouts": [{
 "name": "layout1",
 "subgroup": { "type": "groupby", "key": "gender" },
 "aspect_ratio": "�llY",
 },{
 "name": "layout2",
 "subgroup": { "type": "groupby", "key": "pclass" },
 "size": { "type": "uniform", "isShared": ? }
 "aspect_ratio": "�llX",
 }, {
 "name": "layout3",
 "subgroup": { "type": "�atten" },
 "size": { "type": "uniform", "isShared": ? }
}]
 "mark": {
}

(a) Layout 2 : false, Layout 3 : true (b) Layout 2 : false, Layout 3 : false
1st 2nd 3rd Crew 1st 2nd 3rd Crew

Male

Female

Fig. 8. Sharing can be applied hierarchically. Here the Titanic dataset
has been faceted by gender and passenger class. In Figure 6, every
facet shares the size by setting the size sharing property of “layout2” and
“layout3” as true. This yielded a unit bar chart where every dot size is
same and the size is adjusted such that the most crowded facet can fill
the assigned space. However, (a) shares size only in layout2 that the
unit will be the same size among the class but not across genders. This
is in contrast to (b), where sizes are independent of gender and class,
meaning that every unit will be scaled up to fill their subcontainer.

6.1 Expressive Power
Table 2 shows how existing unit visualizations can be expressed
with grammar components. Basically, we have been able to use
Atom to recreate all of the examples in Table 1, with the exception
of dotplots [17] since these use a more complex packing algorithm.

6.2 Generative Power
Figure 9 shows a novel visualization that can be generated using
Atom. The passengers in the Titanic dataset were faceted according

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 9

TABLE 2
Expressing existing unit visualizations using Atom.

Type Operation Note
Scatterplots Map2D

Bar+column chart FillX or FillY
MaxFill

Unit pie chart FillTheta
Pack

Polar coords

Isotypes [12] FillX
Pack

Choropleths Map2D GIS data

Dotplot [17]
FillX
FillY
Pack

Original dotplot
not feasible

Hierarchical axes [25]
FillX
FillY
Pack (center-align)

Quantum Treemap [47] MaxFill
Pack

MaxFill with
variable size

Bubble Chart [48] Map2D Variable size

PivotViewer
FillX
FillY
Pack

Image as mark

SandDance [27] Multiple operations

Histoimages [49]
FillX (Duplicates)
Left (Image): Map2D
Right (Histo): Pack

Colored pixel as
mark

Squares [29] FillY
Pack or FillX Rectangle/square

Past Visions [30] FillX
Square

Image as mark

to the passenger class and each passenger is represented with a
rectangle. The area of the rectangle is proportional to the fare that
each passenger paid and sorted so that people who paid the most
are located in the top-left. The ratio between the price and the
area of the rectangle is shared among child containers so that the
comparison between passenger classes is immediately identifiable.
The visualization is a combination of unit-based barcharts and a
treemap layout succinctly expressed as an ATOM specification.

Similarly, Figure 10 shows another novel visualization where a
small variation in the layout specification generates an unit variation
of the fluctuation chart.

1st 2nd 3rd

Root Container

FillY, Passenger class

Size : Sum, Shared

Pack

Size : Sum, Shared

Draw

FillX, Passenger class

Size : Uniform

Fig. 9. Unique visualization generated using Atom. Here the passengers
of the Titanic were faceted according to their class, and then each unit
was sized by the price of the ticket.

7 DISCUSSION

Below we discuss some of the finer points of our work on the Atom
unit visualization grammar.

Root Container

FillX, Passenger class
Size : Uniform

Pack
Size : Count, Shared

Draw

FillY, Gender
Size : Uniform

Fig. 10. Unique visualization generated using Atom. Here the passengers
of the Titanic were faceted according to their gender (vertical) and their
class (horizontal), and then each unit was colored based on survival (blue
passengers survived).

7.1 Comparison to Existing Declarative Grammars

As mentioned earlier, classic declarative grammars for visual-
izations, such as those that build upon the work of Wilkinson’s
Grammar of Graphics [22], are in wide use. In these systems,
layouts are typically specified using a combination of mark type
(bars, circles, or points, etc.) and a method for mapping attributes
of those marks using the data. While we could extend such systems
to generate unit visualizations by adding additional layout rules, the
way that Atom specifies visualizations is done in a fundamentally
different manner: in Atom, visualizations emerge from the recursive
application of a small set of primitive rules and layouts at different
levels of aggregation. In this manner, Atom shares more in common
with parallel rewriting systems such as L-systems and graftals [46],
where graphics emerge from the successive application of a series
of substitution rules. The difference is that Atom adds the notion of
data and aggregate measures to those rules. For example, barcharts
or scatterplots are never specified explicitly, but are specified
through grouping and packing relationships.

Also, as previously mentioned, product plots [41] are closely
related, where a combination of rules produce plots that allow
for the visualizations of joint distributions and counts. Since most
packing layouts of units are proportional to area, unit visualizations
specified in Atom can achieve much of the expressive power of
product plots. Similar patterns are found in prior work for domain-
specific grammars such as the one proposed by Schultz et al. for
treemaps [56]. Their work defines both a theoretical design space
as well as a tool for rapid visualization development.

7.2 Exploration of the Design Space

It is intriguing to explore how new types of visualizations might
emerge through systematically applying different rules at different
levels of aggregation. Figures 9 and 10 show two different
visualizations that come from the successive application of those
rules. The space of possible combinations, though, is extremely
large, and it is beyond the scope of this paper to figure out effective
ways for narrowing the enumeration of parameters that produce
effective visualizations. Instead we have found that there are
certain heuristic situations where unit visualizations are particularly
effective in contrast to aggregate visualizations; we list them below.
This is by no means an exhaustive list, but our work in this
paper lays the foundation for a systematic enumeration of possible
visualization parameters.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 10

• To deliver relative percentage or probability: When
represented in an aggregated visualization, count or relative
percentage can be ambiguous in the users’ mental model.
A classic example is a Bayesian inference problem. For
example, a small percentage in a large group can mean
much larger absolute numbers than a large percentage in a
small group. This concept is notoriously difficult to deliver
effectively using text. Garcia-Retamero and Hoffrage found
that doctors and patients can make more accurate inferences
when information was communicated in natural frequencies
rather than probabilities [57]. This is also the underlying
problem for the so-called Simpson’s paradox [58], where
aggregate averages can be deceptive in comparison to the
underlying counts.

• To show underlying distribution of statistical summary:
Wilkinson recommends a tally, stem-and-leaf, or a dotplot
as a starting point for analysis instead of commonly
recommended bar charts or kernel density estimations [22].
For example, in his book he states that histograms do not
reveal granular data, but other unit visualizations do.

• To show outliers: Outliers are often lost when using an
aggregate visualization because the individual values are
averaged in with the rest to produce a single summary
statistic. By showing the units themselves, with appropriate
attributes such as color and shape applied, outliers and their
context can be more easily identified.

7.3 Animation and Interaction
One of the distinct advantages of unit visualizations is that there is
a one-to-one correspondence for units in one layout with units in
another layout. This allows for straightforward animated transitions
when switching between different unit visualizations for the same
data by linearly interpolating the positions for each element from
its initial and final positions. Staggered starting times [7], [59],
staged animations [60], or path clustering [61] can be used to help
create more interpretable animated transitions.

Original declarative grammars focused on the generation of
static visualizations, as in the case of Grammar of Graphics or gg-
plot2. However, as interactive visualizations become more common,
recent advances allow for describing interactive interactions with
declarative specifications. Reactive Vega by Satyanarayan et al. [39]
is the first grammar that can specify interactions with declarative
specifications. Vega-Lite [40] further simplified the specification
by using intelligent defaults and showing novel interactions by
enumerating over specifications.

Our Atom grammar currently does not include support for
interactivity, but is at this point only a visual specification language,
similar to the original Grammar of Graphics [22] or ggplot2 [37].
On the other hand, by focusing on the specific domain of unit
visualizations, as Atom does, we can still enable interactions that
are common to all unit visualizations, such as item-level selection,
details-on-demand, filtering, and cross-highlighting. Further inter-
action, such as focus+context layouts, advanced navigation, and
query operations, are left as future work.

8 CONCLUSION AND FUTURE WORK

In this paper, we have defined a new family of visualizations that
are based on maintaining the unique identity of each visual mark
as well as its direct one-to-one mapping to a data item. Many of
these so-called unit visualizations are already part of the standard

vocabulary of visualization techniques—such as dotplots, mosaic
plots, and scatterplots—but our investigation in this paper has
revealed that their design space is actually much larger than was
previously known. To better capture this new family of techniques,
we developed ATOM, a grammar for unit visualizations based
on a declarative specification. Our implementation of the Atom
grammar can generate any arbitrary unit visualization in this design
space. To validate the expressive power of the grammar, we have
presented examples of a large number of existing unit visualizations
expressed as Atom specifications; to validate its generative power,
we have also suggested a number of novel ones.

Our work in this paper is part of a larger trend in the
visualization community of abstracting visualizations into high-
level declarative grammars. These grammars reduce the need for
in-depth programming knowledge and instead enables specifying
visualizations in terms of marks, layout, and data. The Atom
grammar is specialized for unit visualizations, and it can surely
be further refined to support additional visual marks, interaction
techniques, and layouts in the future. However, a longer-term
research vision should be to find a definitive grammar that can
unify many of these existing grammars, while retaining both the
simplicity and the power of the original ones.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful reviews. Deok
Gun Park and Niklas Elmqvist were partially supported by U.S.
National Institutes of Health (NIH) grant R01GM114267. Any
opinions, findings, and conclusions or recommendations expressed
in this article are those of the authors and do not necessarily reflect
the views of the funding agencies.

REFERENCES

[1] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Eds., Readings in
Information Visualization — Using Vision to Think. Morgan Kaufmann
Publishers, 1999.

[2] S. Drucker and R. Fernandez, “A unifying framework for animated and
interactive unit visualizations,” Tech. Rep., August 2015.

[3] N. Elmqvist and J.-D. Fekete, “Hierarchical aggregation for informa-
tion visualization: Overview, techniques and design guidelines,” IEEE
Transactions on Visualization and Computer Graphics, vol. 16, no. 3, pp.
439–454, 2010.

[4] M. C. F. de Oliveira and H. Levkowitz, “From visual data exploration to
visual data mining: A survey,” IEEE Transactions on Visualization and
Computer Graphics, vol. 9, no. 3, pp. 378–394, Jul./Sep. 2003.

[5] P. Cavanagh and G. A. Alvarez, “Tracking multiple targets with multifocal
attention,” Trends in Cognitive Sciences, vol. 9, no. 7, pp. 349–354, 2005.

[6] Z. W. Pylyshyn and R. W. Storm, “Tracking multiple independent targets:
Evidence for a parallel tracking mechanism,” Spatial Vision, vol. 3, pp.
179–197, 1988.

[7] P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and J.-D. Fekete,
“Temporal distortion for animated transitions,” in Proceedings of the
ACM Conference on Human Factors in Computing Systems, 2011, pp.
2009–2018.

[8] S. Huron, R. Vuillemot, and J.-D. Fekete, “Visual sedimentation,” IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 12, pp.
2446–2455, 2013.

[9] S. Huron, Y. Jansen, and S. Carpendale, “Constructing visual represen-
tations: Investigating the use of tangible tokens,” IEEE Transactions on
Visualization and Computer Graphics, vol. 20, no. 12, pp. 2102–2111,
2014.

[10] B. Shneiderman, “The eyes have it: A task by data type taxonomy for
information visualizations,” in Proceedings of the IEEE Symposium on
Visual Languages, 1996, pp. 336–343.

[11] G. P. Ellis and A. J. Dix, “A taxonomy of clutter reduction for informa-
tion visualisation,” IEEE Transactions on Visualization and Computer
Graphics, vol. 13, no. 6, pp. 1216–1223, 2007.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 11

[12] O. Neurath, International Picture Language; the First Rules of Isotype:
With Isotype Pictures. K. Paul, Trench, Trubner & Company, 1936.

[13] S. Huron, S. Carpendale, A. Thudt, A. Tang, and M. Mauerer, “Construc-
tive visualization,” in Proceedings of the ACM Conference on Designing
Interactive Systems, 2014, pp. 433–442.

[14] N. Fitzallen and J. Watson, “Developing statistical reasoning facilitated by
TinkerPlots,” in Proceedings of the International Conference on Teaching
Statistics, 2010.

[15] J. Bertin, Semiology of Graphics. Madison, Wisconsin: University of
Wisconsin Press, 1983.

[16] W. Wang, H. Wang, G. Dai, and H. Wang, “Visualization of large hierar-
chical data by circle packing,” in Proceedings of the ACM Conference on
Human Factors in Computing Systems, 2006, pp. 517–520.

[17] L. Wilkinson, “Dot plots,” The American Statistician, vol. 53, no. 3, pp.
276–281, 1999.

[18] D. A. Keim, M. C. Hao, U. Dayal, and M. Hsu, “Pixel bar charts: a visu-
alization technique for very large multi-attribute data sets,” Information
Visualization, vol. 1, no. 1, pp. 20–34, 2002.

[19] N. Elmqvist, P. Dragicevic, and J.-D. Fekete, “Rolling the dice: Multidi-
mensional visual exploration using scatterplot matrix navigation,” IEEE
Transactions on Visualization and Computer Graphics, vol. 14, no. 6, pp.
1539–1148, 2008.

[20] J. M. Rzeszotarski and A. Kittur, “TouchViz: (multi)touching multivariate
data,” in Extended Abstracts of the ACM Conference on Human Factors
in Computing Systems, 2013, pp. 3119–3122.

[21] ——, “Kinetica: naturalistic multi-touch data visualization,” in Proceed-
ings of the ACM Conference on Human Factors in Computing Systems.
ACM, 2014, pp. 897–906.

[22] L. Wilkinson, The Grammar of Graphics. Springer Science & Business
Media, 2006.

[23] A. Eklund, beeswarm: The Bee Swarm Plot, an Alternative to
Stripchart, 2016, R package version 0.2.3. [Online]. Available:
https://CRAN.R-project.org/package=beeswarm

[24] J. S. Yi, R. Melton, J. T. Stasko, and J. A. Jacko, “Dust & magnet: multi-
variate information visualization using a magnet metaphor,” Information
Visualization, vol. 4, no. 3, pp. 239–256, 2005.

[25] B. Shneiderman, D. Feldman, A. Rose, and X. F. Grau, “Visualizing
digital library search results with categorical and hierarchical axes,” in
Proceedings of the ACM Conference on Digital Libraries, 2000, pp. 57–66.

[26] D. T. Nhon, L. Wilkinson, and A. Anand, “Stacking graphic elements to
avoid over-plotting,” IEEE Transactions on Visualization and Computer
Graphics, vol. 16, no. 6, pp. 1044–1052, 2010.

[27] “Sanddance,” https://www.microsoft.com/en-us/research/project/
sanddance/, accessed: 2017-09-30.

[28] D. G. Park, S.-H. Kim, and N. Elmqvist, “Gatherplots: Extended
scatterplots for categorical data,” University of Maryland, College Park,
Tech. Rep. HCIL-2016-10, 2016.

[29] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams, “Squares:
Supporting interactive performance analysis for multiclass classifiers,”
IEEE Transactions on Visualization and Computer Graphics, no. 1, pp.
61–70, 2017.

[30] K. Glinka, C. Pietsch, C. Dilba, and M. Dörk, “Linking structure, texture
and context in a visualization of historical drawings by Frederick William
IV (1795-1861),” International Journal for Digital Art History, no. 2,
2016.

[31] J. Heer, S. K. Card, and J. A. Landay, “prefuse: a toolkit for interactive
information visualization,” in Proceedings of the ACM Conference on
Human Factors in Computing Systems, 2005, pp. 421–430.

[32] C. Reas and B. Fry, Processing: a programming handbook for visual
designers and artists. MIT Press, 2007, no. 6812.

[33] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven documents,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 12, pp. 2301–2309, 2011.

[34] M. Bostock and J. Heer, “Protovis: A graphical toolkit for visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 15,
no. 6, pp. 1121–1128, 2009.

[35] J. Heer and M. Bostock, “Declarative language design for interactive vi-
sualization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, pp. 1149–1156, 2010.

[36] A. Satyanarayan, K. Wongsuphasawat, and J. Heer, “Declarative interac-
tion design for data visualization,” in Proceedings of the ACM Symposium
on User Interface Software and Technology, 2014, pp. 669–678.

[37] H. Wickham, ggplot2: elegant graphics for data analysis. Springer,
2016.

[38] W. Chang and H. Wickham, “ggvis: Interactive grammar of graphics. R
Package Version 0.4.2,” http://CRAN.R-project.org/package=ggvis, 2015.

[39] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer, “Reactive Vega: A
streaming dataflow architecture for declarative interactive visualization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 22,
no. 1, pp. 659–668, 2016.

[40] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-lite:
A grammar of interactive graphics,” IEEE Transactions on Visualization
and Computer Graphics, pp. 1–1, 2017.

[41] H. Wickham and H. Hofmann, “Product plots,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, no. 12, pp. 2223–2230,
2011.

[42] T. Baudel and B. Broeksema, “Capturing the design space of sequential
space-filling layouts,” IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pp. 2593–2602, 2012.

[43] B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,” in
Proceedings of the IEEE Symposium on Information Visualization, 2001,
pp. 73–78.

[44] M. Friendly, “A brief history of the mosaic display,” Journal of Computa-
tional and Graphical Statistics, vol. 11, no. 1, pp. 89–107, 2002.

[45] S. MacNeil and N. Elmqvist, “Visualization mosaics for multivariate
visual exploration,” Computer Graphics Forum, vol. 32, no. 6, pp. 38–50,
2013.

[46] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants.
Springer-Verlag, 1990.

[47] B. B. Bederson, “PhotoMesa: a zoomable image browser using quantum
treemaps and bubblemaps,” in Proceedings of the ACM Symposium on
User Interface Software and Technology, 2001, pp. 71–80.

[48] V. Battista and E. Cheng, “Motion charts: Telling stories with statistics,”
in American Statistical Association Joint Statistical Meetings, 2011, pp.
4473–4483.

[49] F. Chevalier, P. Dragicevic, and C. Hurter, “Histomages: fully synchro-
nized views for image editing,” in Proceedings of the ACM Symposium
on User Interface Software and Technology, 2012, pp. 281–286.

[50] J.-D. Fekete and C. Plaisant, “Interactive information visualization of a
million items,” in Proceedings of the IEEE Symposium on Information
Visualization, 2002, pp. 117–124.

[51] J. Tukey and P. Tukey, “Strips displaying empirical distributions: I.
textured dot strips,” Bellcore Technical Memorandum, Tech. Rep., 1990.

[52] M. Trutschl, G. Grinstein, and U. Cvek, “Intelligently resolving point
occlusion,” in Proceedings of the IEEE Symposium on Information
Visualization, 2003, pp. 131–136.

[53] K. Stephenson, Introduction to circle packing: The theory of discrete
analytic functions. Cambridge University Press, 2005.

[54] D. E. Knuth, “Backus normal form vs. Backus-Naur Form,” Communica-
tions of the ACM, vol. 7, no. 12, pp. 735–736, 1964.

[55] J. Ferraiolo, F. Jun, and D. Jackson, Scalable vector graphics (SVG) 1.0
specification. iuniverse, 2000.

[56] H.-J. Schulz, S. Hadlak, and H. Schumann, “The design space of implicit
hierarchy visualization: A survey,” IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 4, pp. 393–411, 2011.

[57] R. Garcia-Retamero and U. Hoffrage, “Visual representation of statistical
information improves diagnostic inferences in doctors and their patients,”
Social Science & Medicine, vol. 83, pp. 27–33, Apr. 2013.

[58] C. R. Blyth, “On Simpson’s paradox and the sure-thing principle,” Journal
of the American Statistical Association, vol. 67, no. 338, pp. 364–366,
1972.

[59] F. Chevalier, P. Dragicevic, and S. Franconeri, “The not-so-staggering
effect of staggered animated transitions on visual tracking,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12, pp.
2241–2250, 2014.

[60] J. Heer and G. Robertson, “Animated transitions in statistical data
graphics,” IEEE Transactions on Visusalization and Computer Graphics,
vol. 13, no. 6, pp. 1240–1247, 2007.

[61] F. Du, N. Cao, J. Zhao, and Y.-R. Lin, “Trajectory bundling for animated
transitions,” in Proceedings of the ACM Conference on Human Factors in
Computing Systems, 2015, pp. 259–268.

https://CRAN.R-project.org/package=beeswarm
https://www.microsoft.com/en-us/research/project/sanddance/
https://www.microsoft.com/en-us/research/project/sanddance/
http://CRAN.R-project.org/package=ggvis

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS (SUBMITTED) 12

Deokgun Park received a bachelor in electrical
engineering in 2000 and a masters degree in
biomedical engineering in 2002 at Seoul National
University, Seoul, South Korea. Currently, he is
pursuing a Ph.D. degree in computer science at
University of Maryland, College Park in College
Park, MD, USA.

Steven M. Drucker received a M.Sc. degree
from the MIT AI Lab in 1989 and a Ph.D. in
1994 from the MIT Media Lab, both in Cambridge,
MA, USA. He is currently a Principal Researcher
in the Visualization and Interaction Group at
Microsoft Research in Redmond, WA, USA, and
an affiliate professor in the Computer Science
and Engineering Department at the University of
Washington in Seattle, WA, USA. He is a Senior
Member of the ACM.

Roland Fernandez works as a researcher and
AI School instructor in the Deep Learning Tech-
nology Center at Microsoft Research in Redmond,
WA, USA. His interests include reinforcement
learning, autonomous multitask learning, sym-
bolic representation, AI education, visualization,
and HCI. Before coming to the DLTC, Roland
worked in the VIBE group of MSR doing vi-
sualization and HCI projects, most notably the
SandDance project.

Niklas Elmqvist received the Ph.D. degree in
2006 from Chalmers University of Technology in
Göteborg, Sweden. He is an associate professor
in the College of Information Studies at University
of Maryland, College Park in College Park, MD,
USA. He is also a member of the Institute for
Advanced Computer Studies (UMIACS), Director
of the Master of Science in Human-Computer
Interaction (HCIM) program, and Director of the
Human-Computer Interaction Laboratory (HCIL)
at University of Maryland. He was previously an

assistant professor in the School of Electrical & Computer Engineering
at Purdue University in West Lafayette, IN. He is a senior member of the
IEEE and the IEEE Computer Society.

	Introduction
	Aggregated vs. Unit Visualizations
	Strengths of Unit Visualizations
	Weaknesses of Unit Visualizations

	Related Work
	Unit Visualizations
	Grammars for Visualizations
	Contributions

	Design Space of Unit Visualizations
	Visual Space
	Layout
	Mark Representation

	Atom: A Unit Visualization Grammar
	Shared Property
	View Composition
	Implementation Details

	Evaluation
	Expressive Power
	Generative Power

	Discussion
	Comparison to Existing Declarative Grammars
	Exploration of the Design Space
	Animation and Interaction

	Conclusion and Future Work
	References
	Biographies
	Deokgun Park
	Steven M. Drucker
	Roland Fernandez
	Niklas Elmqvist

