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Long tradition
Not new idea.
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Traffic fatality rates by age7.2  Examples 135

DATA: weight = col(source("traffic.txt"), name("percent"), weight())
ELEMENT: interval(position(summary.sum(bin.rect(age*weight), dim(1))))
ELEMENT: line(position(age*arcsin))

Figure 7.14 Histogram of traffic fatality rates by age

7.2.4.2  Gap Histogram
Figure 7.15 shows an ordinary histogram of birth rate in the left panel and a
gap histogram in the right. The gap binning is a partial Voronoi tessellation of
the data in one dimension (see Section 7.2.5.3 for a 2D example). The edge of
each bin represents the Voronoi boundary midway between two points. Not
all boundaries are computed, however; some bins are left to contain more than
one data point. The area of a bar in either graphic is determined by the number
of cases in the bar times its width. The gap histogram is more useful for iden-
tifying gaps in the data than for representing the density itself. 

ELEMENT: interval(position(summary.count(bin.rect(birth))))

ELEMENT: interval(position(summary.count(bin.voronoi(birth))))

Figure 7.15 Histogram and gap histogram of birth rates
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7.2  Examples 137

Figure 7.17 illustrates a dot plot on the traffic accident data. We have
made a weighting variable and multiplied it by 10 so that each dot represents a
tenth of a percent (the resolution of the original data source). We did not need to
do this with the histogram example because the height of the intervals is measured
on a continuous dimension. With dot plots, we don’t want to use fractional dots.

The plot tells us the data are granular in the data source, something we
could not ascertain with the histogram. There is an important lesson here. Sta-
tistics texts and statistical packages that recommend the histogram as the
graphical starting point for a data analysis are giving bad advice. The same
goes for kernel density estimates. These are appropriate second stages for
graphical data analysis. The best starting point for getting a sense of the dis-
tribution of a variable is a tally, stem-and-leaf, or a dot plot. A dot plot is a spe-
cial case of a tally (perhaps best thought of as a delta-neighborhood tally).
Once we see that the data are not granular, we may move on to a histogram or
kernel density, which smooths the data more than a dot plot. 

The SYSTAT histogram algorithm does take granularity into account (by
picking the number of bars to coincide with the number of distinct values even
for massive datasets), but this does not save us from investigating the data first
with a tally. It simply addresses the problem of misapplying standard binning
size estimates to granular data when constructing histograms. Because bars in
a histogram insist on staying glued together, we do not get to see the granular-
ity. If we know in advance that our data are granular, of course, then there is
no problem.

Incidentally, some might argue that making dot plots a default first step
for analysis is not a good idea for massive datasets containing numerous dis-
tinct values. Wilkinson (1999) addresses that point; it is not a problem.

DATA: wt = col(source("traffic.txt"), name("percent"), weight())
TRANS: wt = prod(y, 10)
ELEMENT: point.dodge(position(bin.dot(age)))

Figure 7.17  Dot plot on binned data
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Unexpected discovery was 
possible because it 

contained more information 
than user originally asked.



Anscombe’s Quartet
I II III IV

x y x y x y x y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56
7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89



Property Value

Mean of x in each case 9 (exact)

Sample variance of x in each case 11 (exact)

Mean of y in each case 7.50 (to 2 decimal places)

Sample variance of y 4.122 or 4.127 (to 3 decimal places)

Correlation between x and y 0.816 (to 3 decimal places)

Linear regression y = 3.00 + 0.500x (to 2 and 3 decimal places, 
respectively)
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Just as pie charts work well for teaching children the concept of fractions (but not for displaying parts of a 
whole in a discernible manner), unit charts might be useful for teaching children to count, but for anyone older 
than a 1st grader they’re not particularly effective. What is a unit chart? The term might not be familiar, but 
you’ve probably seen them many times. Here’s a typical example:

Source: E. J. Fox, from a larger infographic titled “#1 Party School”, 
based on data from “The Partnership Campus & Community United 
Against Dangerous Drinking Annual Assessment Report 08-09”

According to Robert L. Harris in Information Graphics: A Comprehensive Illustrated Reference, a unit chart is 
defined as follows:

A chart used to communicate quantities of things by making the number of symbols on the chart 
proportional to the quantity of things being represented. For example, if one symbol represents ten 
cars and five symbols are shown, the viewer mentally multiples ten times five and concludes that the 
group of symbols represented 50 actual cars. Simple geometric shapes or irregular shapes such as 
pictures and icons are generally used. Each provides basically the same degree of accuracy. When the 
symbols are geometric shapes, the chart is occasionally called a black chart. When pictures, sketches, 
or icons are used, the chart is often referred to as a pictorial unit chart. Unit charts are used almost 
exclusively in presentations and publications such as newspapers, magazines, and advertisements. (p. 
427)

In the example above, a 10x10 matrix of dots with one missing, totaling 99, was used to display student 
self-reported drinking habits. Each dot represents 1% out of 100% of students. Although the numbers add up to 
100% exactly, the designer chose to ignore the decimals in all cases but “Heavy Drinker,” which he rounded up 
from 6.9% to 7%. Had the designer rounded all numbers either up or down, as appropriate, the number of dots 
would have totaled 100. 

Unit Charts Are For Kids
 

Stephen Few, Perceptual Edge
Visual Business Intelligence Newsletter
October, November, December 2010
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If you were a 1st grader who was interested in student drinking habits, this form of display would give you 
the chance to understand the data while practicing your counting skills. Of course, relatively few 1st graders 
are going to find this information useful. This chart was designed for adults—folks who don’t usually need to 
practice counting. Here’s the same data displayed as a bar graph.

0% 10% 20% 30% 40% 50%

Never tried alcohol

Tried alcohol, cu rrently don't drink

Light drinker

Moderate drinker

Heavy drinker

Breakdown of Students by Drinking Status

6.0%

13.3%

29.1%

44.7%

6.9%

= 100.0%Total

Now, rather than counting, we can more easily and efficiently use our eyes to compare the lengths of the bars 
because visual perception is well-tuned to compare the lengths of objects that share a common baseline, such 
as these bars, with speed and precision. So why would we ever use unit charts to display quantitative data? 
For some reason journalists seem to love them. Something about their conceptual simplicity seems to appeal 
to them, perhaps due to a low opinion of their readers’ intellectual skills.

The simplest form of a unit chart displays a single row or column of units, rather than a matrix of both as we 
saw in the previous example. As you can see, a one-dimensional unit chart is simpler to read than a two-
dimensional version.

Given improved ease of use, are one-dimensional unit charts worthwhile? We can read them much as we 
read bar graphs, with one minor difference—the segmentation of values into units inclines us to slow down 
and count, as opposed to the simpler, faster task of comparing their overall heights and then decoding their 

From “Unit Charts are for kids” by Stephen Few 



Still Journalism loves it. 

Why?



Bayesian Inference 
Problem

From “Bayesian models of 
human learning and inference” 
by Josh Tenenbaum



People aren’t Bayesian

• Kahneman and Tversky (1970’s-present): “heuristics and biases” research 

program.  2002 Nobel Prize in Economics.

• Slovic, Fischhoff, and Lichtenstein (1976): “It appears that people lack the 

correct programs for many important judgmental tasks.... it may be argued 

that we have not had the opportunity to evolve an intellect capable of 

dealing conceptually with uncertainty.”

• Stephen Jay Gould (1992): “Our minds are not built (for whatever reason) to 

work by the rules of probability.” 



Environment of 
Evolutionary 
Adaptiveness
(EEA)



• Conditional probabilities
• The probability that a woman has breast cancer is 0.8%. If she has breast cancer, 

the probability that a mammogram will show a positive result is 90%. If a woman 
does not have breast cancer the probability of a positive result is 7%. Take, for 
example, a woman who has a positive result. What is the probability that she 
actually has breast cancer?

• Natural frequencies
• Eight out of every 1000 women have breast cancer. Of these eight women with 

breast cancer seven will have a positive result on mammography. Of the 992 
women who do not have breast cancer some 70 will still have a positive 
mammogram. Take, for example, a sample of women who have positive 
mammograms. How many of these women actually have breast cancer?



From “Simple tools for 
understanding risks: from 
innumeracy to insight” by Gerd
Gigerenzer and Adrian Edwards



participant, the percentage of correct inferences across the three
tasks. Following Gigerenzer and Hoffrage (1995; see also Hoffrage,
Lindsey, et al., 2000), a response was considered as accurate if it
matched the value specified in the last column of Table 2 plus/
minus one percentage point.1 One of the most common errors
reported in Bayesian reasoning is to mistake the sensitivity of
a diagnostic test for its positive predictive value (Eddy, 1982;
Gigerenzer & Hoffrage, 1995). We computed the percentage of re-
sponses in which this error was committed in each condition.
Finally, for the analyses reported below, perceived usefulness and
perceived difficulty were averaged across all three tasks.

Results

Can diagnostic inferences be improved in doctors and their patients
beyond the effect of natural frequencies by providing visual aids? As
Fig. 2 shows, performance was better when the information was
provided in natural frequencies (overall 51% correct inferences,
averaged across all tasks and all other conditions) as compared to
probabilities (38%). Performance was also better when the infor-
mation was presented both numerically and visually (62% correct
inferences) as compared to numerically only (26%). Finally, doctors
made more accurate diagnostic inferences than their patients, 53%
and 35%, respectively. In line with these results, the ANOVA with
numerical format, visual aid, and type of participant as between-
subjects factors and the average percentage of correct diagnostic
inferences across the three tasks as the dependent variable
revealed amain effect of numerical format, F(1,154)¼ 6.56, p¼ 0.01,
h2 ¼ 0.04, visual aid, F(1,154) ¼ 41.11, p ¼ 0.001, h2 ¼ 0.19, and type
of participant, F(1,154) ¼ 10.22, p ¼ 0.001, h2 ¼ 0.05. There were no
higher order interactions that reached statistical significance.

The percentage of responses in which participants mistook the
sensitivity of a diagnostic test for its positive predictive value was
35% and 21% when information was presented in probabilities and
natural frequencies, respectively. This error occurred less often
when the information was presented numerically and visually
(19%) as compared to numerically only (38%). Finally, doctors
committed this error less often than their patients (23% vs. 33%).

Do visual aids improve diagnostic inferences in doctors and
their patients beyond the effect of their numerical skills? Partici-
pants in the numerical format (probabilities vs. natural frequencies)
and visual aid (with vs. without) conditions did not differ with
respect to their level of numeracy. Overall, doctors have higher
numerical skills than their patients (M ¼ 10.6, SD ¼ 1.27 and
M ¼ 8.9, SD ¼ 1.79, respectively, t(160) ¼ "6.99; p ¼ 0.001) and,
therefore, might have less problems understanding information
about health risks. The ANCOVA with numerical format, visual aid,
and type of participant as between-subjects factors, level of
numeracy as a covariate, and the percentage of correct diagnostic
inferences across the three tasks as the dependent variable showed
a main effect of numerical format, F(1,153) ¼ 6.58, p ¼ 0.011,
h2 ¼ 0.04, visual aid, F(1,153) ¼ 42.8, p ¼ 0.001, h2 ¼ 0.20, and level
of numeracy, F(1,153) ¼ 9.35, p ¼ 0.003, h2 ¼ 0.04. These results are
in line with those in the ANOVA reported above (which did not
include level of numeracy as a covariate). However, when level of
numeracy was entered as a covariate, the effect of type of partic-
ipant was reduced and no longer statistically significant,
F(1,153) ¼ 1.78, p ¼ 0.19, h2 ¼ 0.01. Thus, differences between
doctors and their patients in accuracy of diagnostic inferences
disappeared once their level of numeracy was statistically con-
trolled for. There were no higher order interactions.

Do visual aids affect perceived usefulness of information and per-
ceived task difficulty? The ANOVAwith numerical format, visual aid,
and type of participant as between-subjects factors and the esti-
mates of usefulness of information as the dependent variable
showed a main effect of type of participant, F(1,154) ¼ 12.13,
p ¼ 0.001, h2 ¼ 0.07, and an interaction between type of participant
and visual aid, F(1,154) ¼ 5.38, p ¼ 0.02, h2 ¼ 0.03. Patients esti-
mated the information as less useful when it was provided only
numerically, as comparedwith the same information provided both
numerically and visually (p ¼ 0.023). In contrast, doctors perceived
the information as highly useful, with no statistical difference be-
tween the two visual aid conditions (p ¼ 0.322; see Fig. 3). In line
with the results in diagnostic inferences, when level of numeracy
was statistically controlled for, the effect of type of participant on

Fig. 2. Accuracy of diagnostic inferences across the three diagnostic tasks by numerical
format, visual aid, and type of participant. Error bars indicate one standard error of the
mean.

Fig. 1. Visual aid representing the overall number of women at risk, the number of
women who have breast cancer, and the number of women who obtained a positive
mammogram.

1 A more liberal criterion than the one we used in our analyses yielded similar
findings to those reported in the Results section.
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participant, the percentage of correct inferences across the three
tasks. Following Gigerenzer and Hoffrage (1995; see also Hoffrage,
Lindsey, et al., 2000), a response was considered as accurate if it
matched the value specified in the last column of Table 2 plus/
minus one percentage point.1 One of the most common errors
reported in Bayesian reasoning is to mistake the sensitivity of
a diagnostic test for its positive predictive value (Eddy, 1982;
Gigerenzer & Hoffrage, 1995). We computed the percentage of re-
sponses in which this error was committed in each condition.
Finally, for the analyses reported below, perceived usefulness and
perceived difficulty were averaged across all three tasks.

Results

Can diagnostic inferences be improved in doctors and their patients
beyond the effect of natural frequencies by providing visual aids? As
Fig. 2 shows, performance was better when the information was
provided in natural frequencies (overall 51% correct inferences,
averaged across all tasks and all other conditions) as compared to
probabilities (38%). Performance was also better when the infor-
mation was presented both numerically and visually (62% correct
inferences) as compared to numerically only (26%). Finally, doctors
made more accurate diagnostic inferences than their patients, 53%
and 35%, respectively. In line with these results, the ANOVA with
numerical format, visual aid, and type of participant as between-
subjects factors and the average percentage of correct diagnostic
inferences across the three tasks as the dependent variable
revealed amain effect of numerical format, F(1,154)¼ 6.56, p¼ 0.01,
h2 ¼ 0.04, visual aid, F(1,154) ¼ 41.11, p ¼ 0.001, h2 ¼ 0.19, and type
of participant, F(1,154) ¼ 10.22, p ¼ 0.001, h2 ¼ 0.05. There were no
higher order interactions that reached statistical significance.

The percentage of responses in which participants mistook the
sensitivity of a diagnostic test for its positive predictive value was
35% and 21% when information was presented in probabilities and
natural frequencies, respectively. This error occurred less often
when the information was presented numerically and visually
(19%) as compared to numerically only (38%). Finally, doctors
committed this error less often than their patients (23% vs. 33%).

Do visual aids improve diagnostic inferences in doctors and
their patients beyond the effect of their numerical skills? Partici-
pants in the numerical format (probabilities vs. natural frequencies)
and visual aid (with vs. without) conditions did not differ with
respect to their level of numeracy. Overall, doctors have higher
numerical skills than their patients (M ¼ 10.6, SD ¼ 1.27 and
M ¼ 8.9, SD ¼ 1.79, respectively, t(160) ¼ "6.99; p ¼ 0.001) and,
therefore, might have less problems understanding information
about health risks. The ANCOVA with numerical format, visual aid,
and type of participant as between-subjects factors, level of
numeracy as a covariate, and the percentage of correct diagnostic
inferences across the three tasks as the dependent variable showed
a main effect of numerical format, F(1,153) ¼ 6.58, p ¼ 0.011,
h2 ¼ 0.04, visual aid, F(1,153) ¼ 42.8, p ¼ 0.001, h2 ¼ 0.20, and level
of numeracy, F(1,153) ¼ 9.35, p ¼ 0.003, h2 ¼ 0.04. These results are
in line with those in the ANOVA reported above (which did not
include level of numeracy as a covariate). However, when level of
numeracy was entered as a covariate, the effect of type of partic-
ipant was reduced and no longer statistically significant,
F(1,153) ¼ 1.78, p ¼ 0.19, h2 ¼ 0.01. Thus, differences between
doctors and their patients in accuracy of diagnostic inferences
disappeared once their level of numeracy was statistically con-
trolled for. There were no higher order interactions.

Do visual aids affect perceived usefulness of information and per-
ceived task difficulty? The ANOVAwith numerical format, visual aid,
and type of participant as between-subjects factors and the esti-
mates of usefulness of information as the dependent variable
showed a main effect of type of participant, F(1,154) ¼ 12.13,
p ¼ 0.001, h2 ¼ 0.07, and an interaction between type of participant
and visual aid, F(1,154) ¼ 5.38, p ¼ 0.02, h2 ¼ 0.03. Patients esti-
mated the information as less useful when it was provided only
numerically, as comparedwith the same information provided both
numerically and visually (p ¼ 0.023). In contrast, doctors perceived
the information as highly useful, with no statistical difference be-
tween the two visual aid conditions (p ¼ 0.322; see Fig. 3). In line
with the results in diagnostic inferences, when level of numeracy
was statistically controlled for, the effect of type of participant on

Fig. 2. Accuracy of diagnostic inferences across the three diagnostic tasks by numerical
format, visual aid, and type of participant. Error bars indicate one standard error of the
mean.

Fig. 1. Visual aid representing the overall number of women at risk, the number of
women who have breast cancer, and the number of women who obtained a positive
mammogram.

1 A more liberal criterion than the one we used in our analyses yielded similar
findings to those reported in the Results section.

R. Garcia-Retamero, U. Hoffrage / Social Science & Medicine 83 (2013) 27e3330

From “Visual representation of statistical information 
improves diagnostic inferences in doctors and their 
patients” by Garcia-Retamero and Hoffrage



Assessing the Effect of Visualizations on Bayesian Reasoning

through Crowdsourcing

Luana Micallef, Pierre Dragicevic, and Jean-Daniel Fekete, Member, IEEE

Fig. 1. The six visualizations evaluated in our study, illustrating the classic mammography problem [21].

Abstract—People have difficulty understanding statistical information and are unaware of their wrong judgments, particularly in

Bayesian reasoning. Psychology studies suggest that the way Bayesian problems are represented can impact comprehension,

but few visual designs have been evaluated and only populations with a specific background have been involved. In this study, a

textual and six visual representations for three classic problems were compared using a diverse subject pool through crowdsourcing.

Visualizations included area-proportional Euler diagrams, glyph representations, and hybrid diagrams combining both. Our study

failed to replicate previous findings in that subjects’ accuracy was remarkably lower and visualizations exhibited no measurable

benefit. A second experiment confirmed that simply adding a visualization to a textual Bayesian problem is of little help, even when

the text refers to the visualization, but suggests that visualizations are more effective when the text is given without numerical values.

We discuss our findings and the need for more such experiments to be carried out on heterogeneous populations of non-experts.

Index Terms—Bayesian reasoning, base rate fallacy, probabilistic judgment, Euler diagrams, glyphs, crowdsourcing.

1 INTRODUCTION

Both laymen and professionals have difficulty making inferences and
decisions based on statistical and probabilistic data [18, 26, 32]. This
can have severe consequences in many domains.

Physicians need to diagnose diseases based on the outcome of un-
reliable medical tests. Patients need to decide whether they should un-
dertake heavy medical treatment. Wrong judgments are common and
often result in overdiagnosis [55], e.g., up to two thirds of breast can-

• Luana Micallef is with INRIA and School of Computing, University of
Kent, UK, e-mail: lm304@kent.ac.uk.

• Pierre Dragicevic is with INRIA, e-mail: dragice@lri.fr.
• Jean-Daniel Fekete is with INRIA, e-mail: jean-daniel.fekete@inria.fr.

Manuscript received 31 March 2012; accepted 1 August 2012; posted online
14 October 2012; mailed on 5 October 2012.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

cers detected by mammography can be overdiagnosed [58]. In other
cases, patients with a positive HIV test result attempted or committed
suicide before further tests turned out negative [13, 25, 50]. In this
domain, a crucial piece of information for effective decision making is
the probability that a patient has a disease given that a test is positive.

In legal trials, juries have to convict or acquit defendents based on
unreliable evidence and here too, wrong judgments abound [36]. A
respected professor and advisor to defense lawyers claimed on U.S.
television that since only 0.1% of wife batterers murder their wives,
evidence of battering should be ignored in murder trials [29]. This
reasoning is however fallacious, since the only important information
is the probability that a husband was the murderer given that he bat-
tered his wife and she was killed.

These two scenarios involve Bayesian inference, which is known to
be counterintuitive and subject to fallacious reasoning. As an illustra-
tion, consider the following classic problem [21]:
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Examples Picture fragment Type C1: Token C2: Token Grammar C4: Assembly model C3: Environment

1. Chris
Jordan

Artistic Object / picture
of object

1 picture: = 1 plastic cup, used
on airline flights in the US during
last six hours

Artistic, the assembly model in this
case does not follow the definition
of a monosemic system. The as-
sembly is not described as process-
ing the data, but as providing a feel-
ing about the data.

2D Paper canvas

2. Otto
Neurath

Analytic Pictogram
3 Pictograms: = 1 car per 50

people, = 1 bus per 50 people,
= 1 phone per 50 people

Cat.1

Cat.2 2D Paper canvas

3. Michael
Hunger

Analytic Lego bricks 15m= 30m=

45m=

60m=

Color=Project

Day= Color=Week’s day

Unit token type 2

Unit token type 1

H
ou

rs
 sp

en
t

Days
1h

6h

3D Physical tangible
Lego board

4. Kevin
Quinn

Analytic Lego bricks

D
eg

re
e 

of
 

im
po

rt
an

ce

ID

ID

ID Color=Categories N
um

be
r o

f i
ss

ue
s

Categories of issues
Tim

e
3d Physical tangible
Lego board

Table 2. Four real world analytic and artistic examples of constructive visualization made from assembling unit tokens, and their respective components.
Picture 1: c�Chris Jordan, Picture 2: extracted from [50], Picture 3: c�Michael Hunger, Picture 4: c�General Motors Cf. http://goo.gl/zMFK6E.

is printed on the side. The company has adopted this system,
and Quinn and colleagues continue to work with the Lego
visualization board. For instance, if a special part of the ve-
hicle such as the brake does not function properly during the
durability testing, the person in charge will make a paper re-
port as usual and also provide hand-operated data dynamics
by adding a Lego brick to the board, with the ID of the report
on the side. One colleague said: “The teams either want to
see their Legos moving in a positive direction or have a solid
action plan for addressing one that is red”.

Learning from these Examples
Each of these examples is simple to construct and to read.
Each also exhibits the principles of constructive visualization,
as is summarized in Table 2, though each does so in a differ-
ent way, providing instances within the broader design space.
In this subsection we evaluate the constructive visualization
paradigm using these examples by discussing how they ad-
dress the design challenges outlined earlier.
DC1: Simplicity - All four examples address this design chal-
lenge in the following way: (1) they have been made by peo-
ple who are not visualization experts, they are simple to make,
understand and reproduce. They have simple and rich token
mappings (!C1), and grammar (!C2), and in each case, the
correspondence between the token and the data unit is easy to
understand and to assign. Moreover, the assembly model is
understandable (!C3).
DC2: Expressivity - All examples address the expressivity
design challenge in the following way: first, in each case
the author was freely allowed define the signs; second, the
data attribute mapping to these signs was also something
the author could decide, and finally the author could freely
assemble these signs. Jordan and Neuraths examples illus-
trate the first point, where they design their own signs/tokens
(!C1=pictogram, object or picture) to express some dimen-

sion of the data. Hunger’s token grammar (!C2) shows the
second point: how with the same type of token (Lego brick),
one can define a grammar with several types of semantics: a
day token (ordered data) with a color for each day, and the
quarter of hour token (quantitative data) with a color for each
project. Even though Jordan takes artistic freedoms in his
assembly model (!C3), the constructions can be made and
understood by everybody, and this exemplifies our third point.
Jordan‘s assembly model expresses only one data dimension,
the magnitude of his data. Neurath shows at least two data
dimensions: amount and categories. Hunger expresses three
dimensions in his model: day of the week, time of the day,
and identity of the project and Quinn shows four dimensions:
time spent, category of the issue, the ID of issues, and issues’
degree of completion. Finally, this diversity of token gram-
mar shows the ease of assigning a data attribute (!DC1).
DC3: Dynamics - Hunger‘s and Quinn‘s examples address
this design challenge in the way that they create their as-
sembly model (!C3) to support collective or individual up-
dates. Hunger and Quinn both use their visualization as an
input method of keeping track of their data over time and as
a source of information both to make reports and to inform
decisions. They both update their visualizations several times
in a day by moving, adding, and removing tokens (!C1).
In addition, Quinn‘s also updated by his group. They appar-
ently do not update their token grammar (!C2). However,
the possibility of dynamics (!DC3) is also dependent on the
environment. While Lego is updatable and adjustable, pho-
tographs and printed graphics are less so. Reproducing Neu-
raths approach computationally could enable dynamics.

RELATED WORK IN VISUALIZATION
As mentioned earlier, the ideas of Froebel and Piaget have
already inspired considerable research in computer science:
learning programming environments [43, 52, 60, 59], com-
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Dust and Magnet by Yi et al. Kinetica: Naturalistic Multi-touch Data Visualization
by Rzeszotarski and Kittur



Constructing Visual Representations:
Investigating the Use of Tangible Tokens

Samuel Huron, Yvonne Jansen, Sheelagh Carpendale

Fig. 1. Constructing a visualization with tokens: right hand positions tokens, left hand points to the corresponding data.

Abstract—The accessibility of infovis authoring tools to a wide audience has been identified as a major research challenge. A key
task in the authoring process is the development of visual mappings. While the infovis community has long been deeply interested
in finding effective visual mappings, comparatively little attention has been placed on how people construct visual mappings. In
this paper, we present the results of a study designed to shed light on how people transform data into visual representations. We
asked people to create, update and explain their own information visualizations using only tangible building blocks. We learned that
all participants, most of whom had little experience in visualization authoring, were readily able to create and talk about their own
visualizations. Based on our observations, we discuss participants’ actions during the development of their visual representations and
during their analytic activities. We conclude by suggesting implications for tool design to enable broader support for infovis authoring.

Index Terms—Constructive visualization; Physical visualization; Dynamic visualization; Empirical study; Token; Visualization author-
ing; Information visualization; Visual mapping; Novices; Visualization construction; Visual analytics

1 INTRODUCTION

The use of information visualization (infovis) is becoming increas-
ingly widespread, with the result that infovis can now be encountered
in everyday life: online, in newspapers, or on TV shows. In response,
the research community started to consider infovis for purposes other
than strictly analytical ones [43] and to explore questions such as the
democratization of visualization [53]. However, this democratization
requires that the general public, not just experts, be able to design,
publish, and discuss their own visualizations with their own data.

The need to create new, more accessible information visualization
tools is noted as a major research challenge [29, 36]. As Victor [52]
illustrates, the available software tools either offer only a limited set of
predefined visualization templates or require effort and skills, such as
coding, to create more adapted or customized results. By comparing
different approaches to creating visualizations, e.g. spreadsheet soft-
ware, programming languages, and computer assisted drawing, he de-
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rives three relevant properties that may help the community reach the
goal of creating accessible yet powerful visualization tools: simplic-
ity, expressivity, and dynamicity. We can find some of these properties
in existing tools that people spontaneously use to help them think vi-
sually. Examples include creating visualizations with manual encod-
ing [5], on napkins [14], on whiteboards [54], with paper and scis-
sors [19], or building tangible visualizations [34].

In previous work, we defined constructive visualization [31] as a
theoretical basis for a new visualization authoring paradigm based on
Froebels ideas [21]. Constructive Visualization is motivated by ben-
efits that may arise from constructing a visualization out of tokens.
Since tokens can be added and removed as needed, such constructions
offer possibilities for both expressive freedom and dynamic adjust-
ment. We present in this article a study to examine and refine this
paradigm. Our goal is to investigate: if people can construct their own
visualizations using tokens, how they construct their visualizations,
and what type of visualizations they create. Finally we are interested
what limitations people encounter with this approach. In particular,
we focus on the visual mapping process – the process by which peo-
ple use tokens to create a visual arrangement that represents their data.
Our deconstruction of this process reveals eleven logical tasks that can
be grouped according to their main purpose of construction, computa-
tion and explanation. Our primary contributions are:

• showing how infovis novices create, update, and discuss a tangible
token based visualization;

• unpacking the ‘black box’ of the process by which people map data



Visual Sedimentation
Samuel Huron, Romain Vuillemot, and Jean-Daniel Fekete, Senior Member, IEEE

Fig. 1. The Visual Sedimentation metaphor applied to a bar chart (left), a pie chart (center), and a bubble chart (right).

Abstract—We introduce Visual Sedimentation, a novel design metaphor for visualizing data streams directly inspired by the physical
process of sedimentation. Visualizing data streams (e. g., Tweets, RSS, Emails) is challenging as incoming data arrive at unpredictable
rates and have to remain readable. For data streams, clearly expressing chronological order while avoiding clutter, and keeping aging
data visible, are important. The metaphor is drawn from the real-world sedimentation processes: objects fall due to gravity, and
aggregate into strata over time. Inspired by this metaphor, data is visually depicted as falling objects using a force model to land
on a surface, aggregating into strata over time. In this paper, we discuss how this metaphor addresses the specific challenge of
smoothing the transition between incoming and aging data. We describe the metaphor’s design space, a toolkit developed to facilitate
its implementation, and example applications to a range of case studies. We then explore the generative capabilities of the design
space through our toolkit. We finally illustrate creative extensions of the metaphor when applied to real streams of data.

Index Terms—Design, information visualization, dynamic visualization, dynamic data, data stream, real time, metaphor

1 INTRODUCTION

This paper introduces Visual Sedimentation, a novel design metaphor
inspired by the physical process of sedimentation. This process is the
result of objects falling due to gravitational forces and then aggregat-
ing over time into compact layers. We show how the physical prop-
erties of the sedimentation process can be applied to the design of
effective visualizations of data streams through metaphor: new items
are the equivalent to falling objects, animated by virtual forces, and
aggregating over time in area charts.

Data streams are sequences of typed objects, and are very common
with social networks updates, tweets, emails, network logs, RSS feeds,
or updates in distributed version control systems. The challenges of
visualizing data streams match many characteristics of the physical
sedimentation process: data appear at unpredictable times, accumu-
late until they are processed, and need to be kept in aggregated form
to provide historical and contextual information over time. Designing
visualizations to convey those various stages is not straightforward as
many visual representations may have to be displayed simultaneously.
We are specifically interested in smoothing the transition between the
data stream’s focus—recent data—and the context—older data.

In this paper, we define the sedimentation process as it appears in
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nature, followed by an explanation of how it applies as a metaphor for
data streams visualizations. To facilitate the design of visualizations
using this metaphor, we implemented a supporting toolkit; we applied
this toolkit to design and implement case studies of both classical and
novel visualizations based on real-life datasets. Building on the suc-
cess of these cases studies, we then explore the Visual Sedimentation
design space by modifying the toolkit parameters and creating a group
of variant visualizations. This process of deconstructing the design
space has provided us with creative results that we present. We finally
address technical issues related to the implementation of the Visual
Sedimentation metaphor before discussing related and future works.

2 SEDIMENTATION

Sedimentation is commonly understood as the deposition of a solid
material from air or water. Biologists define it as “the tendency for
particles in suspension to settle out of the fluid in which they are en-
trained, and come to rest against barrier” [40]. Geologists extend this
definition to “deposits from glacial ice and those materials collected
under the impetus of gravity alone, as in talus deposits, or accumula-
tions of rock debris at the base of cliffs” [6].

Many factors contribute to the sedimentation process; we focus here
on several elements that are applicable to our metaphor. The central el-
ement of the sedimentation process is the sediment itself: rock, dust or
particles that vary in composition, size and weathering stage (Figure 2,
center). External physical forces are applied to sediments transport-
ing them according to the forces’ directions and magnitudes. Further-
more, depending on weathering and collisions, sediments may split
or become compressed. The process that compresses sediments over
time is called decay. Sediments end their journey as they accumulate
on each other and on barriers, settling and aggregating into sedimen-

data graphics [14], suggesting that accepted guidelines for 
visualization might also be applied to animation. We revisit these 
principles in greater detail later in the paper. 

2.2 Animation in Information Visualization 
Animation in interactive visualization has been a topic of research 
for over the last decade and a half. Some research has focused on 
systems issues, developing frameworks for applying animation in 
user interfaces. Hudson and Stasko [11] introduced toolkit support 
for animation and the Information Visualizer [19] enabled animation 
and level-of-detail control with a cognitive coprocessor that was 
leveraged by a number of pioneering visualizations (e.g., [20]). Other 
research has focused on designing animations to facilitate perception. 
One approach is to use motion as an additional visual variable within 
which to encode data [1]. Another is to use animation to facilitate 
understanding of transitions between different states of an interface. 
We focus on this second approach. 

Animated transitions have received much attention within tree 
visualization. Cone Trees [20] use animated rotations at multiple 
levels of a tree to bring selected items into view. Yee et al [26] 
introduce valuable heuristics for animating transitions in radial tree 
layouts. SpaceTrees [18] and DOITrees [10] animate tree branches 
as they are expanded and collapsed. Both apply staging, breaking up 

animations into distinct phases. For example, a transition within 
SpaceTree might involve first collapsing a subtree, translating the 
viewing region, and then expanding newly visible subtrees.  

In many cases, the evaluation of animated transitions has relied 
on anecdotal evidence, leaving questions as to their actual efficacy. 
Some systems, however, have been the subject of formal studies of 
animated transitions. StepTree [5], a 3D treemap visualization, uses 
animated fading and resizing to “zoom” into subtrees. A controlled 
experiment found mixed results in revisitation tasks: one set of users 
successfully used navigation shortcuts in animated conditions, while 
others made more errors relative to static transitions. Bederson and 
Boltman [3] found that animated transitions within a family tree 
explorer improved subjects‟ abilities to reconstruct the tree from 
memory, evidence of facilitated learning. Robertson et al‟s studies of 
polyarchy visualizations [21] found that use of animated transitions 
improved both task time and user satisfaction. Simple transitions 
(e.g., translation rather than rotation) about 1 second long gave the 
best performance, though user preferences varied.  

More recently, animated transitions have been applied within 
statistical data graphics. The Name Voyager [25] stacked area chart 
visualization uses animation when data is filtered, often including 
scale changes that involve animating gridlines and axis labels. These 
and other related uses of animation are applied in the visualizations 

 
Figure 1. Animating from a scatter plot to a bar chart. The top path directly interpolates between the starting and ending states. The 
bottom path is staged: the first stage moves points to their x-coordinates and updates the x-axis, the second stage morphs the points into bars. 

 
Figure 2. Animating from stacked bars to grouped bars. The top path directly interpolates between the starting and ending states. The 
bottom path is staged: the first stage changes the widths and x-coordinates of bars, the second stage drops the bars down to the baseline. 

 
Figure 3. A multi-stage animation of changing values in a donut chart. Stage 1: Wedges split into two rings. Stage 2: Wedges translate 
to be centered on their final position. Stage 3: Wedges then update their values, changing size. Stage 4: Wedges reunite into a single ring.  

Animated Transitions in Statistical Data Graphics
By Jeffrey Heer, George G. Robertson
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ATOM: Unit Visualization Grammar
{
  "data": "data/titanic.csv",
  "width": 320, "height": 240,  "padding": {..},
  "layouts": [{
    "name": "layout1",
    "type": "gridxy",
    "subgroup": {  "type": "groupby",  "key": "Class" },
    "aspect_ratio": "fillX",
    "size": { "type": "uniform",  "isShared": false },
    "direction": "LRBT",  "align": "LB",
    "margin": { ... },  "padding": {... }
  }, {
    "type": "gridxy",
    "subgroup": { "type": "groupby", "key": "Sex", "isShared": true },
    "aspect_ratio": "fillY",
    "size": { "type": "uniform", "isShared": true },
   }, {
    "subgroup": { "type": "flatten" },
    "aspect_ratio": "square",
    "size": { "type": "uniform", "isShared": true },
    "sort": { "key": "Survived"}
  }],
  "mark": {
    "shape": "circle",
    "color": { "key": "Survived", "type": "categorical" },
    "size": { "type": "max",  "isShared": false },
    "isColorScaleShared": true
  }
}

{
  "data": "data/titanic.csv",
  "width": 320, "height": 240,  "padding": {..},

    "name": "layout1",
    "type": "gridxy",
    "subgroup": {  "type": "groupby",  "key": "Class" },
    "aspect_ratio": "fillX",
    "size": { "type": "uniform",  "isShared": false },
    "direction": "LRBT",  "align": "LB",
    "margin": { ... },  "padding": {... }

    "type": "gridxy",
    "subgroup": { "type": "groupby", "key": "Sex", "isShared": true },
    "aspect_ratio": "fillY",
    "size": { "type": "uniform", "isShared": true },

    "subgroup": { "type": "flatten" },
    "aspect_ratio": "square",
    "size": { "type": "uniform", "isShared": true },
    "sort": { "key": "Survived"}

  "mark": {
    "shape": "circle",
    "color": { "key": "Survived", "type": "categorical" },
    "size": { "type": "max",  "isShared": false },
    "isColorScaleShared": true

Root Container

Layout 1

Layout 2

Layout 3

Draw Shape
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Visual Space

• Dimension
• 1D, 2D, 3D

• Coord
• Rect
• Polar theta
• Cylinder
• Sphere
• Map

same time, it is a very space saving way of displaying a
rather wide hierarchy that is not too deep. The variant
“Wheel” lessens this effect a little by allowing viewers to
peek inside the visualization from above and below. Yet, to
do so, it sacrifices some of the space that the variant
“Sphere” uses so efficiently.

3.1.3 Spiral Steptree

As the core of this new technique stands a new primitive
which we call a “leaning box.” This is a cuboid with its top
being cut off at a certain angle. Stacking a number of them
on top of each other in a Steptree manner results in them
leaning toward one side of the representation. If the tree is
deep enough, such a visualization starts to curl around
itself, forming a Spiral Steptree as shown in Fig. 7. This
proves to be an extremely space efficient way to display
very deep, but narrow hierarchies. How tightly the
representation curls up can be specified by the cutoff angle
of the leaning boxes.

It is crucial to use a layout method that works well with
this kind of primitive. Otherwise, visualizations like the one
shown in Fig. 4 will be the outcome. The simple layout we
have chosen here subdivides the available space only along
one dimension. This results in something that can be
perceived as an Icicle Plot where the branches are not

shown side by side, but are instead stacked behind one
another. Because it is so compact, this technique is of no use
to inspect individual nodes. It rather provides an overview

SCHULZ ET AL.: THE DESIGN SPACE OF IMPLICIT HIERARCHY VISUALIZATION: A SURVEY 403

Fig. 6. (a) The original 2D Polar Treemap. (b) The 3D Polar Treemap variant “Cylinder.” (c) The 3D Polar Treemap variant “Sphere.” (d) The original
2D Sunburst. (e) The 3D Sunburst variant “Sphere.” (f) The 3D Sunburst variant “Wheel.”

Fig. 7. Spiral Steptree that generates dense visualizations of hierarchies.
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Fig. 5. Layout Rules: Some examples of different primitive packing rules can be used to fill any container. Fill expands the cell in a specified

direction, while pack densley packs cells in the specified fashion. These in turn can be combined with other rules to create common unit layouts

shown in 6.

existing frameworks, so in this section, we will concentrate primar-
ily on the layout steps required to create a Unit Visualization. In the
following section, we will demonstrate how this framework enables a
consistent interaction and animation model.

Like UI Frameworks [23] that arrange widgets on a screen, we use
a similar pattern of recursively descending a hierarchy asking children
for information in order to determine how much space is necessary to
display their contents. At each level of the hierarchy are groups of
rows (or groups of groups). Once the lowest level of the hierarchy
is reached, information about the relative statistics in each group is
passed back to the root so that a uniform size for cells can potentially
be enforced. The layout algorithm uses layout rules to arrange all the
containers (and eventually, all the leaf containers or cells). Some lay-
outs choose to explicitly make all cells the same size and density, for
easy direct comparison of counts, while other layouts allow different
sizes to support other types of queries including comparisons of sums,
or proportions.

We’ve found that a small set of layout rules (shown in figure 5),
with each rule being applied at a different hierarchy level, can generate
many common and useful representations. These will be discussed in
more detail below.

The following layout examples are based on the Titanic Dataset
which contains one row for each of 1309 passengers. For each passen-
ger, we have information on the gender, age, cabin class, and whether
the passenger survived. Units in any visualization of this data will
always represent a single passenger.

Overall layout is done with the following steps:

1. Data is first divided into abstract groups using a grouping
criterion. For instance, we might first divide by ’cabin class’ to
create three groups and subsequently divide each of the groups
by gender and finally divide by whether the individual survived
or not, creating two groups within each of the above subgroups.
Thus the dataset is divided into 12 different subgroups, each con-
taining a number of rows from the dataset. The largest (Third
Class men who didn’t survive contains 417 members), while the
smallest (First Class women who didn’t survive contains 5). The
grouping criterion can be changed by user interaction.

2. Both rows in the database and containers are optionally
sorted to determine the order of layout. For instance, we may
wish all the women to be shown in containers before men so
we can sort the entire dataset by gender. Or we may wish show
which cabin class has the most passengers, so we can choose to

sort the containers based on the count of rows contained within
each group.

3. Groups are repeatedly laid out using one or more of the lay-
out rules described in figure 5 above in order to create posi-
tions and sizes for containers Layout rules fall into two broad
classes. Unordered rules, for example, where layout is either
random or purely based on attributes associated with the rows
of data. A scatterplot is a typical example of an unordered rule.
One aspect of a scatterplot is that it can frequently obscure data
by over plotting. While jittering can help to some extent, other
rules which purposefully avoid over plotting are useful. Ordered
(or packing) rules, as a class, avoid over plotting. They partition
each container into subcontainers using the following criteria: a
primary direction or directions of packing; a decision of whether
they are either space filling, or densely packed; alignment (hori-
zontal or vertical) to the parent container if they’re not space fill-
ing; and a decision whether the sizes are all the same or whether
they are proportional - either directly to an attribute of a single
row of data or based on a calculated statistic of the group of data
associated with the container. Refer to figure 6 to see how differ-
ent layout rules at different hierarchical levels are combined to
produce various common plot types in unit form.

4. Shapes are chosen to represent each unit (Now in the leaf
nodes (cells) of all containers). Fill color, opacity, stroke, shape,
glyph, image, labeltext, and size (relative to bounds of the unit’s
cell) are chosen. These can be set and changed interactively and
either chosen uniformly (e.g. set all the colors to blue) or based
on an attribute for each row (e.g. set color based on cabin class)
or group of rows (e.g. set color based on the count of units in the
parent container).

5. All shapes are drawn on the screen. If a previous representa-
tion is already on the screen, all the objects are animated from
their old positions to their new positions. Animated attributes
include color, opacity, selections, and positions.

6. Interactions can affect the visualization in several different
ways. The data itself can be explicitly sorted or filtered to change
the overall visualization. Filtering can either choose to eliminate
rows from the dataset from the visualization or filtered and un-
filtered data can be laid out in separate areas (the filtered items
might all be moved to a separate area on the screen). Different
attributes or binning criteria can be interactively specified. Thus
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existing frameworks, so in this section, we will concentrate primar-
ily on the layout steps required to create a Unit Visualization. In the
following section, we will demonstrate how this framework enables a
consistent interaction and animation model.

Like UI Frameworks [23] that arrange widgets on a screen, we use
a similar pattern of recursively descending a hierarchy asking children
for information in order to determine how much space is necessary to
display their contents. At each level of the hierarchy are groups of
rows (or groups of groups). Once the lowest level of the hierarchy
is reached, information about the relative statistics in each group is
passed back to the root so that a uniform size for cells can potentially
be enforced. The layout algorithm uses layout rules to arrange all the
containers (and eventually, all the leaf containers or cells). Some lay-
outs choose to explicitly make all cells the same size and density, for
easy direct comparison of counts, while other layouts allow different
sizes to support other types of queries including comparisons of sums,
or proportions.

We’ve found that a small set of layout rules (shown in figure 5),
with each rule being applied at a different hierarchy level, can generate
many common and useful representations. These will be discussed in
more detail below.

The following layout examples are based on the Titanic Dataset
which contains one row for each of 1309 passengers. For each passen-
ger, we have information on the gender, age, cabin class, and whether
the passenger survived. Units in any visualization of this data will
always represent a single passenger.

Overall layout is done with the following steps:

1. Data is first divided into abstract groups using a grouping
criterion. For instance, we might first divide by ’cabin class’ to
create three groups and subsequently divide each of the groups
by gender and finally divide by whether the individual survived
or not, creating two groups within each of the above subgroups.
Thus the dataset is divided into 12 different subgroups, each con-
taining a number of rows from the dataset. The largest (Third
Class men who didn’t survive contains 417 members), while the
smallest (First Class women who didn’t survive contains 5). The
grouping criterion can be changed by user interaction.

2. Both rows in the database and containers are optionally
sorted to determine the order of layout. For instance, we may
wish all the women to be shown in containers before men so
we can sort the entire dataset by gender. Or we may wish show
which cabin class has the most passengers, so we can choose to

sort the containers based on the count of rows contained within
each group.

3. Groups are repeatedly laid out using one or more of the lay-
out rules described in figure 5 above in order to create posi-
tions and sizes for containers Layout rules fall into two broad
classes. Unordered rules, for example, where layout is either
random or purely based on attributes associated with the rows
of data. A scatterplot is a typical example of an unordered rule.
One aspect of a scatterplot is that it can frequently obscure data
by over plotting. While jittering can help to some extent, other
rules which purposefully avoid over plotting are useful. Ordered
(or packing) rules, as a class, avoid over plotting. They partition
each container into subcontainers using the following criteria: a
primary direction or directions of packing; a decision of whether
they are either space filling, or densely packed; alignment (hori-
zontal or vertical) to the parent container if they’re not space fill-
ing; and a decision whether the sizes are all the same or whether
they are proportional - either directly to an attribute of a single
row of data or based on a calculated statistic of the group of data
associated with the container. Refer to figure 6 to see how differ-
ent layout rules at different hierarchical levels are combined to
produce various common plot types in unit form.

4. Shapes are chosen to represent each unit (Now in the leaf
nodes (cells) of all containers). Fill color, opacity, stroke, shape,
glyph, image, labeltext, and size (relative to bounds of the unit’s
cell) are chosen. These can be set and changed interactively and
either chosen uniformly (e.g. set all the colors to blue) or based
on an attribute for each row (e.g. set color based on cabin class)
or group of rows (e.g. set color based on the count of units in the
parent container).

5. All shapes are drawn on the screen. If a previous representa-
tion is already on the screen, all the objects are animated from
their old positions to their new positions. Animated attributes
include color, opacity, selections, and positions.

6. Interactions can affect the visualization in several different
ways. The data itself can be explicitly sorted or filtered to change
the overall visualization. Filtering can either choose to eliminate
rows from the dataset from the visualization or filtered and un-
filtered data can be laid out in separate areas (the filtered items
might all be moved to a separate area on the screen). Different
attributes or binning criteria can be interactively specified. Thus
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Fig. 5. Layout Rules: Some examples of different primitive packing rules can be used to fill any container. Fill expands the cell in a specified

direction, while pack densley packs cells in the specified fashion. These in turn can be combined with other rules to create common unit layouts

shown in 6.

existing frameworks, so in this section, we will concentrate primar-
ily on the layout steps required to create a Unit Visualization. In the
following section, we will demonstrate how this framework enables a
consistent interaction and animation model.

Like UI Frameworks [23] that arrange widgets on a screen, we use
a similar pattern of recursively descending a hierarchy asking children
for information in order to determine how much space is necessary to
display their contents. At each level of the hierarchy are groups of
rows (or groups of groups). Once the lowest level of the hierarchy
is reached, information about the relative statistics in each group is
passed back to the root so that a uniform size for cells can potentially
be enforced. The layout algorithm uses layout rules to arrange all the
containers (and eventually, all the leaf containers or cells). Some lay-
outs choose to explicitly make all cells the same size and density, for
easy direct comparison of counts, while other layouts allow different
sizes to support other types of queries including comparisons of sums,
or proportions.

We’ve found that a small set of layout rules (shown in figure 5),
with each rule being applied at a different hierarchy level, can generate
many common and useful representations. These will be discussed in
more detail below.

The following layout examples are based on the Titanic Dataset
which contains one row for each of 1309 passengers. For each passen-
ger, we have information on the gender, age, cabin class, and whether
the passenger survived. Units in any visualization of this data will
always represent a single passenger.

Overall layout is done with the following steps:

1. Data is first divided into abstract groups using a grouping
criterion. For instance, we might first divide by ’cabin class’ to
create three groups and subsequently divide each of the groups
by gender and finally divide by whether the individual survived
or not, creating two groups within each of the above subgroups.
Thus the dataset is divided into 12 different subgroups, each con-
taining a number of rows from the dataset. The largest (Third
Class men who didn’t survive contains 417 members), while the
smallest (First Class women who didn’t survive contains 5). The
grouping criterion can be changed by user interaction.

2. Both rows in the database and containers are optionally
sorted to determine the order of layout. For instance, we may
wish all the women to be shown in containers before men so
we can sort the entire dataset by gender. Or we may wish show
which cabin class has the most passengers, so we can choose to

sort the containers based on the count of rows contained within
each group.

3. Groups are repeatedly laid out using one or more of the lay-
out rules described in figure 5 above in order to create posi-
tions and sizes for containers Layout rules fall into two broad
classes. Unordered rules, for example, where layout is either
random or purely based on attributes associated with the rows
of data. A scatterplot is a typical example of an unordered rule.
One aspect of a scatterplot is that it can frequently obscure data
by over plotting. While jittering can help to some extent, other
rules which purposefully avoid over plotting are useful. Ordered
(or packing) rules, as a class, avoid over plotting. They partition
each container into subcontainers using the following criteria: a
primary direction or directions of packing; a decision of whether
they are either space filling, or densely packed; alignment (hori-
zontal or vertical) to the parent container if they’re not space fill-
ing; and a decision whether the sizes are all the same or whether
they are proportional - either directly to an attribute of a single
row of data or based on a calculated statistic of the group of data
associated with the container. Refer to figure 6 to see how differ-
ent layout rules at different hierarchical levels are combined to
produce various common plot types in unit form.

4. Shapes are chosen to represent each unit (Now in the leaf
nodes (cells) of all containers). Fill color, opacity, stroke, shape,
glyph, image, labeltext, and size (relative to bounds of the unit’s
cell) are chosen. These can be set and changed interactively and
either chosen uniformly (e.g. set all the colors to blue) or based
on an attribute for each row (e.g. set color based on cabin class)
or group of rows (e.g. set color based on the count of units in the
parent container).

5. All shapes are drawn on the screen. If a previous representa-
tion is already on the screen, all the objects are animated from
their old positions to their new positions. Animated attributes
include color, opacity, selections, and positions.

6. Interactions can affect the visualization in several different
ways. The data itself can be explicitly sorted or filtered to change
the overall visualization. Filtering can either choose to eliminate
rows from the dataset from the visualization or filtered and un-
filtered data can be laid out in separate areas (the filtered items
might all be moved to a separate area on the screen). Different
attributes or binning criteria can be interactively specified. Thus

Partition Disjoint



Unit representation

 
Figure 9: PhotoMesa using quantum strip treemaps to group 556 images in 17 directories 

Let us look at the problem of applying existing treemap algorithms to laying out fixed size 
objects, such as images.  For now, let us assume without loss of generality that the images are all 
square (i.e., having an aspect ratio of 1).  We will see later that this does not affect layout issues.  
Given a list of groups of images that we want to lay out, the obvious input to the treemap 
algorithm is the number of images in each group.  The treemap algorithm will generate a list of 
rectangles, and then we just have to decide how to fit each group of images in the corresponding 
rectangle. 

For each rectangle and group of images, the first step is to decide on the dimensions of a grid 
with which to lay out the images in the rectangle.  Given the aspect ratio of the rectangle, we 
compute the number of rows and columns that best fit the images. 

The resulting grid may have more spots than there are images, but will not have too many rows 
or columns.  This layout, however, is not guaranteed to fit in the rectangle.  For example, 
consider a rectangle that was computed to hold a single image.  It will have an area of 1.0, but 
could be long and skinny, perhaps with a width of 10.0 and a height of 0.1.  The obvious solution 
is to scale down the images just enough to fit in the bounds of the rectangle. 

Herein lies the problem.  Since each group of images has to fit in to a separate rectangle, each 
group of images will have to potentially be scaled down.  This will result in each group of 
images being a different size.  Furthermore, since the rectangles are arbitrarily sized and 
positioned, and the images are scaled, the resulting groups of images will not align with each 
other in a visually attractive way. 

Fig. 8. Interactive legends for mapping and selecting based on at-

tributes. Color (left), Size (middle), Search (right)

Fig. 9. Information on each item can be selected and similar items can

be selected along any attribute (left). Selection behavior can be modi-

fied to achieve boolean selection combinations (right)

Fig. 10. Brushing and linking between multiple views (potentially in mul-

tiple browser sessions across multiple users) is supported.

Fig. 11. Units represented as cards or images allow direct visual feed-

back as well as unit visualization layouts.

Item details can be brought up for the selected items (figure 9).
Similar items can be selected by clicking on an attribute (categori-
cal attributes are directly selected while numerical categories allows a
range to be interactively selected).

While keyboard modifiers could be used to modify how selections
were adjusted in conventional ways, we also support selection modes
to facilitate touch only interaction. When in a mode, new selections
are combined with old selections using the specified Boolean operator.
Using the available selection methods, it’s very easy to select, for in-
stance, all the people that survived the sinking of the titanic who paid
less than a certain amount for their fare.

4.1.1 Filtering of Selections

Once a selection has been made, the associated units can either be ex-
cluded or isolated (everything else filtered out of the view). We use a
staged transition [15] so that items are first filtered from the view and
subsequently rearranged to make maximum use of the available space.
We chose to eliminate units from the screen in our first implementa-
tions, though they can also be moved to a separate area on the screen
for units that have been removed from the overall layout.

4.1.2 Brushing and Linking Selections

The prototype supports multiple, linked views. Selections in one view
are reflected in another view. See figure 10. Since the prototype is
implemented as a web app, a lightweight, state-synchronization ser-
vice has been implemented so that anybody can join a sharing session
by opening up the appropriate URL. Sessions can be linked to update
all changes including views, color mappings, filters, and selections; or
just selections so that different views of the data can be explored in
multiple windows by multiple participants.

4.2 Animation

When a new view is displayed, every item is animated between its
original position and a new position and between the previous unit’s
attributes like color and opacity and its new ones. As mentioned above,
we use staged animations when filtering out items. We also maintain
selections so that users can track items and see whether they move to-
gether or to different parts of the resultant diagram. In order to help the
animations be more coherent, the interface is designed to allow only
one dimension of the data to be changed at a time. So, for instance,
when moving from a Scatter Plot to a Column Chart, the x axis for
the column chart is chosen to be the same axis as is currently being
displayed in Scatter Plot. In addition, the data is sorted by the Y axis
attribute of the scatterplot so that the order of items in the columns
best matches the layout in the scatterplot. Figure 12 shows a typical
exploratory sequence within SandDance on a census/voting dataset.

Animations can also be staggered to assist users in understanding
where different groups end up going. While animations help users
understand the overall structure of changes, there is no way that users
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Visual Space
All the passenger in the Titanic
Rect width 640px, height 480px
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Data: Bin by class
Space:  Fill X Direction  
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Rect: width 180px, height 480px
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Space:  Pack XY
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WHAT IS UNIT VISUALIZATION PROCESS?
WHY IT IS IMPORTANT?

HOW TO DRAW?



Group Income
Bill Gates A 60
Steve Jobs A 30
John Doe B 2

… … …

Total Income
Group A 60
Group B 30

Group Income
Bill Gates A 60
Steve Jobs A 30
John Doe B 2

… … …

Aggregated Visualization

Unit Visualization



Benefit of Unit Visualizations Process

•Deliver More information

•Provides Natural format for Perception

•Enables Physical interactions 



A Grammar for Unit Visualization Process
{
  "data": "data/titanic.csv",
  "width": 320, "height": 240,  "padding": {..},
  "layouts": [{
    "name": "layout1",
    "type": "gridxy",
    "subgroup": {  "type": "groupby",  "key": "Class" },
    "aspect_ratio": "fillX",
    "size": { "type": "uniform",  "isShared": false },
    "direction": "LRBT",  "align": "LB",
    "margin": { ... },  "padding": {... }
  }, {
    "type": "gridxy",
    "subgroup": { "type": "groupby", "key": "Sex", "isShared": true },
    "aspect_ratio": "fillY",
    "size": { "type": "uniform", "isShared": true },
   }, {
    "subgroup": { "type": "flatten" },
    "aspect_ratio": "square",
    "size": { "type": "uniform", "isShared": true },
    "sort": { "key": "Survived"}
  }],
  "mark": {
    "shape": "circle",
    "color": { "key": "Survived", "type": "categorical" },
    "size": { "type": "max",  "isShared": false },
    "isColorScaleShared": true
  }
}

{
  "data": "data/titanic.csv",
  "width": 320, "height": 240,  "padding": {..},

    "name": "layout1",
    "type": "gridxy",
    "subgroup": {  "type": "groupby",  "key": "Class" },
    "aspect_ratio": "fillX",
    "size": { "type": "uniform",  "isShared": false },
    "direction": "LRBT",  "align": "LB",
    "margin": { ... },  "padding": {... }

    "type": "gridxy",
    "subgroup": { "type": "groupby", "key": "Sex", "isShared": true },
    "aspect_ratio": "fillY",
    "size": { "type": "uniform", "isShared": true },

    "subgroup": { "type": "flatten" },
    "aspect_ratio": "square",
    "size": { "type": "uniform", "isShared": true },
    "sort": { "key": "Survived"}

  "mark": {
    "shape": "circle",
    "color": { "key": "Survived", "type": "categorical" },
    "size": { "type": "max",  "isShared": false },
    "isColorScaleShared": true

Root Container

Layout 1

Layout 2

Layout 3

Draw Shape
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Thank you. 
Questions?

Human
Computer
Interaction
Laboratory

https://intuinno.github.io/unit/#/

Park, Deokgun, et al. "ATOM: A Grammar for Unit 
Visualizations." IEEE Transactions on Visualization and 
Computer Graphics (2017).

https://intuinno.github.io/unit/


Limitations

• Scalability

• Too many

• Too little

• Visual Clutter



When to use UVP

• To show relative percentage or probability

• To check underlying distribution

• To check outliers

• For the democratic/casual visualizations

• At the beginning stage of exploratory Analysis



Diff with GG

• Generalized Scale
• Scale that returns Single numerical value is from Measurement 

theory
• Scale for Visualizations returns subset of frame as an output

• Facet becomes obsolete
• Recursive iteration until leaf container level
• Collision modifier becomes first class citizen
• Dodge/Stack

• Hierarchical sharing of visual properties 



Visualization Process

24 2  How To Make a Pie

The grammar of graphics was developed with all these questions in mind
in order to produce a flexible system that can create a rich variety of charts as
simply as possible, without duplication of methods. It is also extensible, which
means that processes can be added easily to create new kinds of charts.

Despite the apparent simplicity of a pie, making one invokes almost every
aspect of the grammar. Figure 2.2 shows a data-flow diagram for how a chart
is constructed under this system. Figure 2.2 is simply a refinement of Figure
2.1. The internal processes of make a pie are shown in more detail. These in-
ternal processes constitute the syntax of the grammar of graphics.

Figure 2.2  From data to graphic

Mixing and matching the available processes at each step creates a wide
variety of charts with a minimum of effort. Some charts will be as simple as
the pie. Others will be more complex, as for instance the map of Napoleon’s
march to Moscow and associated temperature graphic in Chapter 20. If we
learn how to make a pie, we can create almost any statistical graphic. We will
first present the general recipe for making a graphic and then we will go step-
by-step through the process of making a pie, pausing occasionally for defini-
tions.

Figure 2.2 is only one part of the design of the system. As a data flow di-
agram, it simply shows what the stages are, how they must be ordered, and
what data are required along the way. It says very little about the actual imple-
mentation of the system. For example, it could be implemented as:
• A procedural library in which the various processes are procedures that

are assembled in a main program loop for each chart. 
• A functional program in which each process is a function and the actual

graphing function itself is computed and then executed. 
• An object-oriented program in which each of the processes is an object

with its own data and behavior.
• A path in a graph model through which an application pushes data.
• A path in a graph model through which the renderer pulls data.
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From The Grammar of Graphics by Leland Wilkinson 2nd edition
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in order to produce a flexible system that can create a rich variety of charts as
simply as possible, without duplication of methods. It is also extensible, which
means that processes can be added easily to create new kinds of charts.

Despite the apparent simplicity of a pie, making one invokes almost every
aspect of the grammar. Figure 2.2 shows a data-flow diagram for how a chart
is constructed under this system. Figure 2.2 is simply a refinement of Figure
2.1. The internal processes of make a pie are shown in more detail. These in-
ternal processes constitute the syntax of the grammar of graphics.

Figure 2.2  From data to graphic

Mixing and matching the available processes at each step creates a wide
variety of charts with a minimum of effort. Some charts will be as simple as
the pie. Others will be more complex, as for instance the map of Napoleon’s
march to Moscow and associated temperature graphic in Chapter 20. If we
learn how to make a pie, we can create almost any statistical graphic. We will
first present the general recipe for making a graphic and then we will go step-
by-step through the process of making a pie, pausing occasionally for defini-
tions.

Figure 2.2 is only one part of the design of the system. As a data flow di-
agram, it simply shows what the stages are, how they must be ordered, and
what data are required along the way. It says very little about the actual imple-
mentation of the system. For example, it could be implemented as:
• A procedural library in which the various processes are procedures that

are assembled in a main program loop for each chart. 
• A functional program in which each process is a function and the actual

graphing function itself is computed and then executed. 
• An object-oriented program in which each of the processes is an object

with its own data and behavior.
• A path in a graph model through which an application pushes data.
• A path in a graph model through which the renderer pulls data.
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1:N mapping 
between source data and visual marks



Categorization based on mapping type

•N:1 ->  Aggregated Visualization Process
•1:1 -> Unit Visualization Process
•1:N -> Unit Visualization Process
• Tags
• Isotypes
• SPLOM


