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TEXT NUMBERS
Lexicon-based Text Mining

Positive = { good, great, happy, … }

Negative = {bad, worst, horrible, ... }

D1 “The movie was great. I was happy.”

D3 “The movie is horrible.”

D2 “The movie opens today.”

Positive Negative

D1 2 0

D2 0 0

D3 0 1
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Linguistic Inquiry and Word Count (LIWC)
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How to Build a Lexicon?
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How to build Lexicon

Manual Automatic
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Manual Automatic

Hand-picking

• Linguistic Inquiry 

and Word Count 

(LIWC)

• General Inquirer 

(GI)

• High Quality, strong signal words
• Hard to build, scale
• Does not adapt to different domain (e.g. Twitter)
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Manual Automatic

Crowdsourcing

• Affective Norms for 

English Words 

(ANEW)

• Hedonometer

• Scales up for single category
• Costly, limited category
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How to build Lexicon

Manual Automatic

Topic Modeling

• Latent Semantic 

Indexing (LSA)

• Latent Dirichlet

Allocation (LDA)
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• Domain adaptable
• Scales to diverse topic
• Difficult to label each group



How to build Lexicon

Manual Automatic

Mixed-initiative

• Empath
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• Built upon 
• Scales to diverse topic
• Easy to interpret

word embedding
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word embedding



How to build Lexicon

word embedding

Frog 0.34 .7 0.67 0.9 …

Car 0.53 0.23 0.35 0.21 …

Pennington, Jeffrey, Richard Socher, and Christopher Manning. "Glove: Global vectors for word representation." Proceedings of 
the 2014 conference on empirical methods in natural language processing (EMNLP). 2014.
Goldberg, Yoav, and Omer Levy. "word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding 
method." arXiv preprint arXiv:1402.3722 (2014).



How to build Lexicon

word embedding

Frog 

1. Frogs
2. Toad
3. Litoria
4. Leptodacitylidae
5. Rana
6. Lizard
7. eleutherodactylus

Nearest  Neighbor



How to build Lexicon

word embedding

Frog 

1. Frogs
2. Toad
3. Litoria
4. Leptodacitylidae
5. Rana
6. Lizard
7. eleutherodactylus

Nearest  Neighbor

Image from http://cs.stanford.edu/people/karpathy/tsnejs/wordvecs.html
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Human 
Task
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Compute Word 
Embedding

Add/update 
keywords

Recommend 
relevant words

Evaluate 
words

Compute 
document 

scores

Analyze 
documents

Machine 
Task

Human 
Task

Refinement of seed words
Based on recommended words

Refinement of seed words
Based on document analysis



Tweets from Trump and Hillary during 2016 election34



{ pollen, cherry, underbrush, thicket, grape, 
sunflower, field, willow, rose, fenced, 
bouquet, flowered … bush … }

Plant 
Category
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{ pollen, cherry, underbrush, thicket, grape, 
sunflower, field, willow, rose, fenced, 
bouquet, flowered … bush … }

Plant 
Category
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Trump talked 3.31 times more about Plant than Hillary



bush

field
field
cedar root

etc
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bush

field
field
cedar root

etc
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False positive errors

Trump talked 3.31 times more about Plant than Hillary
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False positive errors

Trump talked 3.31 times more about Plant than Hillary

Polysemy 
bush – n . a low plant with many branches that arise from or near the ground.
Bush – n. Jeff Bush
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Top 10 categories

Trump vs Hillary 
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Top 10 categories

Trump vs Hillary 

42

Type II Errors



Design Requirements
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D1: Diverse needs D2: Integrated loop D3: In-context



ConceptVectorVisual Analytics 
for Lexicon-based 

Text Mining
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Building dictionary



Sophisticated concept modeling
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D1: Diverse needs



Sophisticated concept modeling
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I am interest in “tidal 
flooding”, not “storm 

flooding.”

Irrelevant words 
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Sophisticated concept modeling
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I am interest in “tidal 
flooding”, not “storm 

flooding.”

Irrelevant words 

Can I map the words 
continuously from 

“Democratic party” to 
“Republican party”?

Bipolar Conceps

Kernel Density Estimation (KDE)

using Gaussian Kernel 

where bandwidth represents selectivity of seed words
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Cosine similarity for 
relevance score

Previous approach
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Cosine similarity for 
relevance score

Positive Seed

Irrelevant Seed

Negative Seed
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Cosine similarity for 
relevance score

Positive Seed

!"

Irrelevant Seed

!#

!$

%&'&()*+& = (1 − !$) 1 (!# − !")

Negative Seed
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Bipolar concepts
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D2: Integrated loop

Compute Word 
Embedding

Add/update 
keywords

Recommend 
relevant words

Evaluate 
words

Compute 
document 

scores

Analyze 
documents

Refinement of seed words
Based on recommended words

Refinement of seed words
Based on document analysis

D3: In-context
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Document Analysis
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Ranking Comments
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Remove Irrelevant words
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Temporal Trend



Immigration

Immigration topic rise

Time
64
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Comment Plot
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Evaluation
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Munzner, Tamara. "A nested model for visualization design and validation." IEEE transactions on 
visualization and computer graphics 15.6 (2009).
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Lab Experiment

• Lexicon-building 

interface

• Wordnet and 

Thesaurus.com

Quantitative 
Evaluation

• Bipolar concept 

modeling

• Compared with 

crowdsourced data

Expert Feedback

• System limitation 

and usage

• Visual analytics 

expert and NLP 

expert



Conclusion
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Take-away Message

• You can build custom dictionary for your own domain 
and analyze text. 

• Interactive refinement may improve quality of text 
analysis by reducing false positive errors.
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Try demo at:
Conceptvector.org

Questions?
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