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Open-ended Tasks



Open-ended tasks ...

Unstructured data.

Image credit: Watterson, B. (1985). Calvin and Hobbes.



Open-ended tasks ...

Ditterent but justitiable answers.

Image credit: XKCD



Open-ended tasks

world knowledge & reasoning .

Image credit: LeFunny.net



Challenge is scalability.

Image credit: Coping and Prevention (Stress and Quality of Worki
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Unstructured data



Image Credit: thelthing.com



Statistical
Machine Learning




Difficulty with ML

* Open-ended tasks in text mining...

» Unstructured output
* Multiple answers based on context

* World knowledge and reasoning



Difficulty with ML

* Open-ended tasks in text mining...

» Unstructured output
* Multiple answers based on context

* World knowledge and reasoning

-> Requires Human in the Loop
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Anscombe’s Quartet
S || | A
X y X y X y X y
10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58
8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76
13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71
9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84
11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47
14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04
6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25
4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50
12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91
5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.8926



Mean of x in each case 9 (exact)

Sample variance of x in each case 11 (exact)
Mean of y in each case 7.50 (0 2 decimal places)
Sample variance of y 4.122 or 4.127 (to 3 decimal places)
Correlation between x and y 0.816 (to 3 decimal places)
Linear regression y = 3.00 + 0.500X (to 2 and 3 decimal places,

respectively)
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Visual Analytics

VS



Visual Analytics

with



Visual Analytics

Sensing mechanism
Human explores output using visualization

with

Steering mechanism
Human steers the system to improve the output



Visual Analytics

Scales up
open-ended tasks.
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Comment Analytics



Sensing mechanism
Human explores output using visualization

Automated

Human
System

Steering mechanism
Human steers the system to improve the output



(a)Parallelspaces[HICSS'16]

(b) TopicLens[VAST'16]

Sensing mechanism

(c) Gatherplot

Automated
System

Human

Steering mechanism

Human steers the system to improve the output
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(a)Parallelspaces[HICSS'16] (b) TopicLens[VAST'16] (c) Gatherplot

Automated
System

(d) CommentIQ[CHI'16]

Steering mechanism

(e) ConceptVector[VAST'17]
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(a)Parallelspaces[HICSS'16]

(b) TopicLens[VAST'16]
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CommentlQ

Park, Deokgun et al. "Supporting comment moderators in identifying high quality online news
comments." Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 2016

Best Paper Honorable Mention
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In an ideal world,



43



In reality,



Image credit: quickmeme.com



To save the world



Image Credit: NYTimes Times Insider
11/23/2015 The Most Popular Reader Comments on The Times
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6,367 submitted
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6,367 submitted
4,447 accepted
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6,367 submitted
— 4,447 accepted

1,920 filtered
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6,367 submitted
— 4,447 accepted

1,920 filtered
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The world of
comments



Worst Best



Worst Best

[\

Redundant

No new information
Consensus



Worst Best

Irrelevant

Add noise



Worst Best

[\

Inappropriate

Harmful
Negative Loop
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Image Credit: Luis Loli from Flickr
https://www.flickr.com/photos/luisloli/558346676/in/pool-1377281@N25/
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Online and Uncivil? Patterns
and Determinants of Incivility in Newspaper
Website Comments

Kevin Coe’, Kate KenskiZ3, & Stephen A. Rains?

1 Department of Communication, University of Utah, Salt Lake City, UT 84112, USA
2 Department of Communication, University of Arizona, Tucson, AZ 85721, USA
3 Department of Government & Public Policy, University of Arizona, Tucson, AZ 85721, USA

Incivility in public discussions has received increasing attention from academic and popular
commentators in recent years. In an effort to better understand the nature and determi-
nants of such incivility, this study examined a 3-week census of articles and comments
posted to a local newspaper’s website—totaling more than 300 articles and 6,400 com-
ments. The results of the content analysis show that incivility occurs frequently and is asso-
ciated with key contextual factors, such as the topic of the article and the sources quoted
within the article. We also find that, contrary to popular perceptions, frequent commenters
are more civil than are infrequent commenters, and uncivil commenters are no less likely
than civil commenters to use evidence in support of their claims.

doi:10.1111/jcom.12104

Civility is a crucial principle of public life, one that speaks to “the fundamental tone
and practice of democracy” (Herbst, 2010, p. 3). Indeed, a commitment to civil
discourse —the free and respectful exchange of ideas—has been viewed as a demo-
cratic ideal from the ancient Athenian forums to the mediated political debates of
modern times (Papacharissi, 2004; Sapiro, 1999). This is not to say the ideal is always
realized. Public discourse has always had its share of incivility, and the current era is
no different in this respect. What is different now, however, is that the 21st century’s
vast, interactive media environment has created broader opportunities for public
debate, and that moments of incivility now spread more rapidly and widely than ever
before (Sobieraj & Berry, 2011). In this milieu, incivility has become a central concern
of citizens and scholars. For example, a 2010 survey found that more than 8 in 10
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Worst Best
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High Quality

Inspiring
Add information
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CHI 2011 « Session: Incentives & User Generated Content

May 7-12, 2011 « Vancouver, BC, Canada

Normative Influences on Thoughtful Online Participation

Abhay Sukumaran’, Stephanie Vezich’, Melanie McHugh', Clifford Nass'

'Department of Communication
450 Serra Mall
Stanford University, Stanford, CA 94305
{abhays, mmchugh, nass}@stanford.edu

ABSTRACT

We describe two experiments on whether individual
thoughtful effort during online commenting is shaped by
situational norms derived from the behavior of social others
and the design of the environment, respectively. By
measuring the length of participants’ comments on a news
website, the time taken to write them, and the number of
issue-relevant thoughts they contain, we demonstrate that
participants conform to high vs. low norms of
thoughtfulness manifested through either the apparent
behavior of other users or through visual, textual and
interactional design features conceptually associated with
thoughtfulness. Theoretical and applied insights for
designing online participatory environments are discussed.

Author Keywords
Online comments, user-generated content, thoughtfulness,
social norms, environmental norms.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

ACM General Terms
Experimentation.

INTRODUCTION
A M A

I PO nann o€ analalio Alacorieao locomdiatad

Department of Psychology
University of California Los Angeles
1285 Franz Hall, Los Angeles, CA 90095
isvezich@ucla.edu

While such regulation has traditionally been achieved
through moderation systems [18], recent research has also
focused on subjective perceptions that people form about
their online social situations. Online contributions can be
motivated, for example, by the individual’s perception of
their level of participation relative to others [4] or their
degree of identification with a social group [33]. In the
physical world, interpersonal situations are rife with
behavioral influences traceable to social norms, i.e., shared
standards of expected behavior inferred from what others
are doing [6]. Research also suggests that norms can be
derived not only from other people but also from features of
the immediate environment that are mentally associated
with specific categories of social behavior [1, 15]. We
suggest that online comment spaces present fundamentally
social yet rather ambiguous situations that are likely to be
subject to such normative influence.

In two experimental studies, we explore whether thoughtful
participation in online comment spaces can be induced via
social norms. The first experiment shows that people tend
to conform to standards of thoughtfulness in commenting
behavior set by others. The second experiment
demonstrates that a similar effect can be achieved by
introducing design elements conceptually associated with
thoughtfulness in an online comment space. We interpret
these results in light of social psychological theories of how

enviranmental _and_cacial _cuec_influnence nercentian_and
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Changing Deliberative Norms on News
Organizations’ Facebook Sites

Natalie Jomini Stroud
Department of Communication Studies, University of Texas, 2504A Whitis Ave. (A1105), Austin, TX 78712-0115

Joshua M. Scacco

Brian Lamb School of Communication, Purdue University, 100 N. University St., Beering Hall 2154, West
Lafayette, IN 47907-2098

Ashley Muddiman

Department of Communication and Journalism, University of Wyoming, Ross Hall, 1000 E. University Ave., Dept.

3904, Laramie, WY 82071

Alexander L. Curry
Department of Communication Studies, University of Texas, 2504A Whitis Ave. (A1105), Austin, TX 78712-0115

Comments posted to news sites do not always live up to the ideals of deliberative theorists. Drawing
from theories about deliberation and group norms, this study investigates whether news organi-
zations can affect comment section norms by engaging directly with commenters. We conducted a
Sfield study with a local television station in a top-50 Designated Market Area. For 70 political posts
made on different days, we randomized whether an unidentified staff member from the station, a
recognizable political reporter, or no one engaged with commenters. We assessed if these changes
affected whether the comments (n = 2,403) were civil, were relevant, contained genuine questions,
and provided evidence. The findings indicate that a news organization can affect the deliberative
behavior of commenters.

P T =t L = T = U L I T
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Drawbacks?



Scalable way?



Image Credit: Getty Images









How can we select good comments?



How can we select good comments?

(In @ more scalable way)



Wait!
What do you mean by

good comments?



Methodology



mmmmmmmm

....................................................................................................................

PRECONDITION CORE ANALYSIS

personal validation inward-facing validation outward-facing validation

Design Study Methodology: Reflections from the Trenches and the Stacks
Michael SedImair, Miriah Meyer, and Tamara Munzner
IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis), 18(12): 2431-2440, 2012.
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PRECONDITION CORE ANALYSIS
personal validation inward-facing validation outward-facing validation
Learn
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.......................................

PRECONDITION

personal validation

implement

.........................................

CORE

inward-facing validation

Design

______________________________________

ANALYSIS

outward-facing validation
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......................................................................................................................

PRECONDITION CORE ANALYSIS
personal validation inward-facing validation outward-facing validation
Evaluate

84



mmmmmm

......................................................................................................................

PRECONDITION CORE ANALYSIS
personal validation inward-facing validation outward-facing validation
Learn Design Evaluate
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PRECONDITION ANALYSIS

personal validation inward-facing validation outward-facing validation

Design Evaluate
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Target User

Image Credit: NYTimes 04/17/2014
A Comment's Path to Publication

Bassey Etim, community manager at NYT




“We use real people because
humans can absorb the
variables of conversation and
weigh them in more intricate
ways.”



“We use real people because
humans can absorb the
variables of conversation and
weigh them in more intricate
ways.”

Give moderator power
to sort as he/she
wants
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“The second comes from a
fear that the thoughts you’re
absorbing will seep into your
own opinions.”



Need for balanced
view

“The second comes from a
fear that the thoughts you’re
absorbing will seep into your
own opinions.”
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“Want to go up to the
reporter and say here are the
10 from commenters that are
from more thoughtful people
in comments. “



“Want to go up to the
reporter and say here are the
10 from commenters that are
from more thoughtful people
in comments. “

Multiple use case



“The comments section often
reads like a PhD seminar. | am
quite certain that your readers
can and would offer up insightful
but wry and amusing comments.”



“The comments section often
reads like a PhD seminar. | am

) ) Unexpected
quite certain that your readers comments
can and would offer up insightful
but wry and amusing comments.”




...................................................................................................................

PRECONDITION ANALYSIS

personal validation outward-facing validation
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Previously in newsroom...

Yay!
Let’s read them all.
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Proposed process

1. Score comments
with NLP criteria
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Proposed process

2. Interactive selection with
Custom Ranked List and
Overview visualization
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Proposed process

3. Machine learns from User
feedback

100
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Scoring criterias



v'Article Relevance
v'Conversational Relevance
v'Personal Experience
v'Length of comments
v'Readability of the comment
v'Recommendation Score
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Criteria Only

2815 331782 12542
The Times’ Community API articles comments Pick



Criteria Only

The Times” Community API

2815 331782

articles comments

4

Train

Test

Pick comments

Nonpick comments

12542
Pick
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Pick
Prediction

No Pick

Ground Truth

Pick

No Pick

1712 (True Positive)

926 (False Positive)

797 (False Negative)

1583 (True Negative)

Precision: 0.65
Recall: 0.68
F2 score: 0.68



Results

Pick
Prediction

No Pick

Ground Truth

Pick

No Pick

1712 (True Positive)

926 (False Positive)

797 (False Negative)

1583 (True Negative)

Precision: 0.65
Recall: 0.68
F2 score: 0.68
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Custom Ranked List



114



115



Overview
Visualization



CommentlQ

http://moderator.comment-iq.com/#/demo
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.....................................................................................................................

PRECONDITION ANALYSIS

personal validation inward-facing validatig outward-facing validatio

Evaluate
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THE BALTIMORE SUN
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Field-experience

ID Organization . Workflow
(in years)

P1 10
P2 Washington Post 1 Post-moderation
P3 4
P4 4

New York Times Pre-moderation
P5 7
P6 Wall Street Journal 4 Post-moderation
P7 Baltimore Sun 7 Post-moderation
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Field-experience

ID Organization . Workflow
(in years)

P1 10
P2 Washington Post 1 IPost-moderation
P3 4
P4 4

New York Times Pre-moderation
PS5 7
P6 Wall Street Journal 4 IPost-moderation
P7 Baltimore Sun 7 IPost-moderation

123



Field-experience

ID Organization . Workflow
(in years)

P1 10
P2 Washington Post 1 Post-moderation
P3 4
P4 4

New York Times Pre-moderation
PS5 7
P6 Wall Street Journal 4 Post-moderation
P7 Baltimore Sun 7 Post-moderation
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1 hour structured
interview with test drive



Findings



“...Shifting moderating to a reporting

research job.”

Paraphrased from one moderator



* Flexibility is great



* Comments are made by
poeoplel
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* Flexibility is great

*Comments are made by
oeople!

e use-cases for readers
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For general public

* Beyond



For general public

* Beyond
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For general public

* Beyond
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Conclusion



What are good comments?

How can we select good comments?



What is a high-quality comment depends
on the journalistic context.



Visual analytics approach can help
moderators find high-quality comments.



Time to upgrade our
comments section






Simranjit Sachar

Niklas ElImqvist
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(a)Parallelspaces[HICSS'16]
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ConceptVector

Park, Deokgun, et al. "ConceptVector: text visual analytics via interactive lexicon building using word

embedding." IEEE transactions on visualization and computer graphics 24.1 (2018): 361-370.
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v Article Relevance
v'Conversational Relevance
v'Personal Experience
v'Length of comments
v'Readability of the comment
v'Recommendation Score
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TEXT
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TEXT Visualization



TEXT NUMBERS Visualization



Lexicon-based Text Mining

TEXT NUMBERS
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Lexicon-based Text Mining

TEXT NUMBERS

Lexicon = A set of keywords that is related to specific concept
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TEXT

=)

Lexicon-based Text Mining

NUMBERS

Lexicon = A set of keywords that is related to specific concept

Positive = { good, great, happy, ... }

Negative = {bad, worst, horrible, ... }

150



= HH

Lexicon-based Text Mining

TEXT NUMBERS

g Lexicon = A set of keywords that is related to specific concept

’;------...,‘/

Positive§= { good, great, happy, ... }

"IIIIIII-

Negativé = {bad, worst, horrible, ... }

4pEEEEEEER®
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o

Lexicon-based Text Mining

TEXT NUMBERS

Positive = { good, great, happy, ... }

Negative = {bad, worst, horrible, ... }
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=)

Lexicon-based Text Mining

TEXT NUMBERS

Positive = { good, great, happy, ... }

Negative = {bad, worst, horrible, ... }

b1 “The movie was great. | was happy.”
b2 “The movie opens today.”
D3

“The movie is horrible.”
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=)

Lexicon-based Text Mining

TEXT NUMBERS

Positive = { good, great, happy, ... }

Negative = {bad, worst, horrible, ... }

ol “The movie was great. | was happy.” Positive | Negative

, , D1 2 0
P2 “The movie opens today. ||»
D2 0 0

D3 V74 . . o V4
The movie is horrible. D3 0 1
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Two problems



Tweets from Trump and Hillary during 2016 election



Plant { pollen, cherry, underbrush, thicket, grape,

sunflower, field, willow, rose, fenced, bouquet,
Category flowered ... bush ... }
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{ pollen, cherry, underbrush, thicket, grape,
sunflower, field, willow, rose, fenced, bouquet,
flowered ... bush ... }

Trump talked 3.31 times more about than
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{ pollen, cherry, underbrush, thicket, grape,
sunflower, field, willow, rose, fenced, bouquet,
flowered ... bush ... }

Trump talked 3.31 times more about than
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field cedar root

R W A4
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field cedar root

R W A4
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Trumo-tatked 3. 31timesmoreabout -than

/

False positive errors
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Trumo-tatked 3. 31timesmoreabout -than

False positive errors

Polysemy
bush —n . a low plant with many branches that arise from or near the ground.
Bush — n. Jeff Bush
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Top 10
categories

Trump vs Hillary



Top 10
categories

Trump vs Hillary

Type Il Errors
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What if we don’t have the
dictionary?



Visual Analytics

for Lexicon-based CO n Ce pt\/e Cto r

Text Mining




Building
dictionary



How to build Lexicon

word embedding

Fro g 0.34 7 0.67 0.9

Car 053 | 023 | 035 | o021

Pennington, Jeffrey, Richard Socher, and Christopher Manning. "Glove: Global vectors for word representation." Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP). 2014.

Goldberg, Yoav, and Omer Levy. "word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method." arXiv
preprint arXiv:1402.3722 (2014).



How to build Lexicon

word embedding

Nearest Neighbor

Frog

Frogs

Toad

Litoria
Leptodacitylidae
Rana

Lizard
eleutherodactylus

NouhkwNneE



How to build Lexicon

word embedding

Frog

Frogs

Toad

Litoria
Leptodacitylidae
Rana

Lizard
eleutherodactylus

NouhkwNneE

Image from http://cs.stanford.edu/people/karpathy/tsnejs/wordvecs.html



Previous Work

Fast, E., Chen, B., & Bernstein, M. S. (2016,
May). Empath: Understanding topic signals
in large-scale text. In Proceedings of the

2016 CHI Conference on Human Factors in

Computing Systems (pp. 4647-4657). ACM.



Sophisticated concept
modeling

Irrelevant words

4 N

| am interest in “tidal
flooding”, not “storm
flooding.”
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Sophisticated concept
modeling
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Sophisticated concept
modeling

Irrelevant words

-
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| am interest in “tidal
flooding”, not “storm
flooding.”

~

/

Kernel Density Estimation (

using Gaussian Kernel

)

Bipolar Conceps

Can | map the words
continuously from
“Democratic party” to
“Republican party”?

where bandwidth represents selectivity of seed words
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Cosine similarity for
relevance score

Previous approach
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Positive Seed
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Irrelevant Seed

Cosine similarity for
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Positive Seed

Negative Seed
Irrelevant Seed

Cosine similarity for
relevance score
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Positive Seed

Negative Seed
Irrelevant Seed

Cosine similarity for
relevance score

Relevance = (1 —5;) - (Sp — Sp)
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D2: Integrated loop D3: In-context

Refinement of seed words
Based on document analysis

m Recommend Compute

Compute Add/updat Evaluate P Analyze
Word relevant document

. e keywords words documents

Embedding words scores

Refinement of seed words
Based on recommended words
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Document Analysis
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Ranking
Comments



Temporal Trend



Immigration topic rise

Immigration

Time



Comment Plot
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Take-away Message

* You can build custom dictionary for your own
domain and analyze text.

* Interactive refinement may improve quality of
text analysis by reducing false positive errors.

Park, Deokgun, Seungyeon Kim, Jurim Lee, Jaegul Choo, Nicholas Diakopoulos, and
Niklas EImqvist. Conceptvector: Text visual analytics via interactive lexicon building

using word. IEEE transactions on visualization and computer graphics (TVCG) o
1
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Comments Analytics



Comment Analytics

Help comments
moderation and interactive
semantic analysis
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Visual Analytics Comment Analytics Future Works

Scales up Help comments
open-ended tasks. moderation and interactive
semantic analysis
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Future work
Defending Digital Democracy
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Organized Attacks

Who Where

« Korean Intelligence e Facebook

« 3,500 man/year
* Twitters

Army Intelligence

* 600 man/year « News Article Comments

Police
. 80,000 man/year * Internet Forum

* Army
* 130 man/year

Samsung
* 150 man/year



“A Carnegie Mellon scholar, Dov H. Levin,
... 81 by the United States and 36 by the
Soviet Union or Russia between 1946 and
2000
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http://www.dovhlevin.com/
http://journals.sagepub.com/doi/abs/10.1177/0738894216661190

Best Comment Attack Pattern

World

Trump congratulates Putin on his The battle ground
reelection, discusses U.S.-Russian for Best comments
‘arms race’

Trump says he called to congratulate Russia's Putin on election win I All Comments (2.1k) I

o —_— _— —_— _—
think4yrslf 4 hours ago (Edited)
Never mind there was just another school shooting.
Never mind Cambridge Analytica.
Let's congratulate Putin.
The mind of Donnie Moscow.
—_—

Like ##149 Reply « Link Report m

President Trump also said that he will discuss what he described as an "arms race" with President Putin.

By Jenna Johnson and Anton Troianovski % Email the author

President Trump congratulated Russian President Vladimir Putin on his reelection
victory in a phone call Tuesday and said he intends to meet with Putin to discuss various H e rd b e h aVv | or

subjects, including an “arms race” that is “getting out of control.”
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Visual Analytics Approach

e (Qverview visualization
 Contents DB retrieval
* User History

Automated
System

Human

Opinion Feedback

Design Guidelines
Interactive Overview

Unit Visualizations

Collaboration by Sharing

Contributions

207



What if ...
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Echo chamber & Filter bubbles

Image Credit: immediatefuture.co.uk
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(Technologies such as social media) lets
you go off with like-minded people, so

you're not mixing and sharing and

understanding other points of view ...

It's super important. It's turned out to be
more of a problem than I, or many others,

would have expected.
- Bill Gates (2017
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What if ...

You belong here.

/

All the people in US



Overview of opinions

removes difference



Overview of opinions
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Visual Analytics

Scales up
open-ended tasks.
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Visual Analytics Comment Analysis

Scales up Help comments moderation
open-ended tasks. and interactive semantic
analysis
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Visual Analytics Comment Analysis Future Works

Scales up Help comments moderation Will protect digital
open-ended tasks. and interactive semantic democracy
analysis
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Thank you.

Questions?
Deokgun.park@uta.edu

Try:

commentiqg.firebaseapp.com

conceptvector.org

Human
Computer
Interaction

Laboratory



mailto:Deokgun.park@uta.edu
https://commentiq.firebaseapp.com/
http://conceptvector.org/

