
1

Software Testing and Maintenance 1

Outline

  Introduction

  Basic Concepts

  The Testing Process

  Types of Testing

  Testing Philosophy

  Summary

Software Testing and Maintenance 2

Software Engineering

  Software has become pervasive in modern society
  Directly contributes to quality of life
  Malfunctions cost billions of dollars every year, and have

severe consequences in a safe-critical environment

  How to build quality software, especially for large-
scale development?

  Requirements, design, coding, testing, maintenance,
configuration, documentation, deployment, and etc.

2

Software Testing and Maintenance 3

Software Testing

  Steve Ballmer, 2006: “Let's acknowledge a sad truth about
software: any code of significant scope and power will have
bugs in it.”

  A dynamic approach to detecting software faults
  Alternatively, static analysis can be performed, which is

however often intractable

  Involves sampling the input space, running the test object,
and observing the runtime behavior

  The single most widely used approach in practice
  Labor intensive, and often consumes more than 50% of

development cost

Software Testing and Maintenance 4

Outline

  Introduction

  Basic Concepts

  The Testing Process

  Types of Testing

  Testing Philosophy

  Summary

3

Software Testing and Maintenance 5

Fault, Error & Failure (1)

  Fault : A static defect in the software
  Incorrect instructions, missing instructions, extra

instructions

  Error : An incorrect internal state that is the
manifestation of some fault

  Failure : External, incorrect behavior with respect
to the requirements or other description of the
expected behavior

Software Testing and Maintenance 6

Fault, Error, and Failure (2)

public static int numZero (int[] x) {
 // effects: if x == null throw NullPointerException
 // else return the number of occurrences of 0 in x
 int count = 0;
 for (int i = 1; i < x.length; i ++) {
 if (x[i] == 0) {
 count ++;
 }
 }
 return count;
}

4

Software Testing and Maintenance 7

Fault, Error, and Failure (3)

  The state of numZero consists of the values of
the variables x, count, i, and the program counter.

  Consider what happens with numZero ([2, 7, 0])
and numZero ([0, 7, 2])?

Software Testing and Maintenance 8

Fault & Failure Model

  Three conditions must be satisfied for a failure to
be observed

  Reachability : The location or locations in the program
that contain the fault must be reached

  Infection : The state of the program must be incorrect
  Propagation : The infected state must propagate to cause

some output of the program to be incorrect

5

Software Testing and Maintenance 9

Static & Dynamic Testing

  Static Testing: Testing without executing the
program.

  Code walkthrough & inspection, and various static analysis
techniques.

  Dynamic Testing: Testing by executing the
program with real inputs

  Static information can often be used to make dynamic
testing more efficient.

Software Testing and Maintenance 10

Test Case

  Test data: data values to be input to the program
under test

  Expected result: the outcome expected to be
produced by the program under test

6

Software Testing and Maintenance 11

Testing & Debugging

  Testing: Finding inputs that cause the software to
fail

  Debugging: The process of finding a fault given a
failure

  In practice, testing & debugging are often
performed in a cyclic fashion

Software Testing and Maintenance 12

Verification & Validation

  Verification: Ensure compliance of a software
product with its design

  Validation: Ensure compliance of a software
product with intended usage

  Question: Which task, validation or verification, is
more difficult to perform?

7

Software Testing and Maintenance 13

Quality Attributes

  Static attributes refer to the actual code and
related documentation

  Well-structured, maintainable, and testable code
  Correct and complete documentation

  Dynamic attributes refer to the behavior of the
application while in use

  Reliability, correctness, completeness, consistency,
usability, and performance

Software Testing and Maintenance 14

Testability

  The degree to which a system or component
facilitates the establishment of test criteria and the
performance of tests to determine whether those
criteria have been met

  The more complex an application, the lower the
testability, i.e., the more effort required to test it

  Design for testability: Software should be
designed in a way such that it can be easily tested

8

Software Testing and Maintenance 15

Outline

  Introduction

  Basic Concepts

  The Testing Process

  Types of Testing

  Testing Philosophy

  Summary

Software Testing and Maintenance 16

The Process

  Preparing a test plan

  Constructing test data

  Executing the program

  Specifying program behavior

  Evaluating program behavior

  Construction of automated oracles

9

Software Testing and Maintenance 17

Test & Debug Cycle

Construct
test input

Execute
program

Is behavior as
expected?

Testing to be
terminated?

Stop

Operational
profile

Test plan

Specification

Cause of error to
be determined

now?
Debug the
program

Error to be fixed
now?

File pending
error report

Fix Error

Input
domain

input data

Test case

behavior

yes

no yes

use
use

use

no

Software Testing and Maintenance 18

An Example

Program sort:

  Given a sequence of integers, this program sorts
the integers in either ascending or descending order.

  The order is determined by an input request
character “A” for ascending or “D” for descending.

10

Software Testing and Maintenance 19

Test plan

1.  Execute the program on at least two input
sequences, one with “A” and the other with “D” as
request characters

2.  Execute the program on an empty input sequence

3.  Test the program for robustness against invalid
inputs such as “R” typed in as the request
character

4.  All failures of the test program should be
reported

Software Testing and Maintenance 20

Test Data
  Test case 1:

  Test data: <“A” 12 -29 32 .>
  Expected output: -29 12 32

  Test case 2:
  Test data: <“D” 12 -29 32 .>
  Expected output: 32 12 -29

  Test case 3:
  Test data: <“A” .>
  Expected output: No input to be sorted in ascending order.

  Test case 4:
  Test data: <“D” .>
  Expected output: No input to be sorted in ascending order.

  Test case 5:
  Test data: <“R” 3 17 .>
  Expected output: Invalid request character

  Test case 6:
  Test data: <“A” c 17.>
  Expected output: Invalid number

11

Software Testing and Maintenance 21

Test Harness

sort

Test pool

test_setup

get_input

check_input

call_sort check_output

report_failure

print_sequence

request_char
num_item

in_numbers
sorted_sequence

Test Harness

Software Testing and Maintenance 22

Test Oracle

Oracle

Does the observed behavior
match the expected behavior?

program under test

Observed
behavior

Input

12

Software Testing and Maintenance 23

Outline

  Introduction

  Basic Concepts

  The Testing Process

  Types of Testing

  Testing Philosophy

  Summary

Software Testing and Maintenance 24

Classifier C1: Source of Test Generation

  Black-box testing: Tests are generated from
informally or formally specified requirements

  Does not require access to source code
  Boundary-value analysis, equivalence partitioning, random

testing, pairwise testing

  White-box testing: Tests are generated from
source code.

  Must have access to source code
  Structural testing, path testing, data flow testing

13

Software Testing and Maintenance 25

Classifier C2: Life Cycle Phases

PHASE TECHNIQUE

Coding Unit Testing

Integration Integration Testing

System Integration System Testing

Maintenance Regression Testing
Postsystem, pre-release Beta Testing

Software Testing and Maintenance 26

Classifier C3: Goal Directed Testing

GOAL TECHNIQUE
Features Functional Testing
Security Security Testing
Invalid inputs Robustness Testing

Vulnerabilities Penetration Testing

Performance Performance Testing

Compatibility Compatibility Testing

14

Software Testing and Maintenance 27

Classifier C4: Artifact Under Test

ARTIFACT TECHNIQUE
OO Software OO Testing

Web applications Web Testing

Real-Time software Real-time testing

Concurrent software Concurrency testing

Database applications Database testing

Software Testing and Maintenance 28

Outline

  Introduction

  Basic Concepts

  The Testing Process

  Types of Testing

  Testing Philosophy

  Summary

15

Software Testing and Maintenance 29

Philosophy

  Level 0: Testing is the same as debugging.

  Level 1: Testing aims to show correctness

  Level 2: Testing aims to show the program under
test doesn't work

  Level 3: Testing aims to reduce the risk of using
the software

  Level 4: Testing is a mental discipline that helps
develop higher quality software

Software Testing and Maintenance 30

Outline

  Introduction

  Basic Concepts

  The Testing Process

  Types of Testing

  Testing Philosophy

  Summary

16

Software Testing and Maintenance 31

Summary

  Quality is the central concern of software
engineering.

  Testing is the single most widely used approach to
ensuring software quality.

  Testing consists of test generation, test
execution, and test evaluation.

  Testing can show the presence of failures, but not
their absence.

