
1

Software Testing and Maintenance 1

Today’s Agenda

  Software Maintenance

Software Testing and Maintenance 2

Software Maintenance

  Introduction

  Process Models

  Program Understanding

  Configuration Management

  Management Issues

  Conclusion

2

Software Testing and Maintenance 3

Software Maintenance

  Management and control of changes to a software
product after delivery

  Bug fix, new features, environment adaptation,
performance improvement

  Often accounts for 40-70% of the cost of the
entire life-cycle of a software product

  The more successful a software product is, the more
time it spends on maintenance

Software Testing and Maintenance 4

Software vs Programs
Software Components Examples
Program 1. Source code
 2. Object code

 1. Analysis/Specification (a) Formal specification
 (b) Data flow diagrams

 2. Design (a) High-level design
 (b) Low-level design
 (b) Data model

Documentation 3. Implementation (a) Source code
 (b) Comments

 4. Testing (a) Test design
 (b) Test results

Operating Procedures 1. Installation manual
 2. User manual

3

Software Testing and Maintenance 5

Maintenance vs Development

  Maintenance must work within the parameters and
constraints of an existing system

  The addition of a new room to an existing building can be
more costly than adding the room in the first place

  An existing system must be understood prior to a
change to the system

  How to accommodate the change?
  What is the potential ripple effect?
  What skills and knowledge are required?

Software Testing and Maintenance 6

Why Maintenance?

  To provide continuity of service
  Bug fixing, recover from failure, accommodating changes

in the environment

  To support mandatory upgrades
  Government regulations, maintaining competitive edges

  To support user requests for improvements
  New features, performance improvements, customization

for new users

  To facilitate future maintenance work
  Re-factoring, document updating

4

Software Testing and Maintenance 7

A Maintenance Framework

  User Requirements
  Error correction, new features

  Environment
  Operational: Innovations in hardware and software
  Organizational: Policy changes, competition

  Maintenance Process
  Different maintenance process models

  Software
  Maintainability, complexity, quality of documentation

  Maintenance personnel
  Staff turnover, domain expertise

Software Testing and Maintenance 8

Lehman’s Laws

  Law of continuing change: systems must be
continually adapted

  Law of increasing complexity: as a system evolves,
its complexity increases unless work is done to
maintain or reduce it
  Law of continuing growth: functionality must be
increased continually to maintain user satisfaction
  Law of declining quality: system quality will appear
to decline unless rigorously adapted

5

Software Testing and Maintenance 9

Software Change

  Corrective change: triggered by defects in the software
  Residual errors in design and/or coding

  Adaptive change: driven by the need to accommodate
modifications in the environment

  Innovations in hardware/software, changes in business rules

  Perfective change: undertaken to expand the existing
requirements

  Enhancement of functionality, improvement in computational
efficiency

  Preventive change: undertaken to prevent malfunctions or to
improve maintainability

  Code restructuring, optimization and documentation updating

Software Testing and Maintenance 10

Interplay of changes

Adaptive change Perfective change

Corrective change

Preventive change

Leads to

6

Software Testing and Maintenance 11

Expenditure on Different Changes

Corrective Adaptive Perfective Others

10

20

30

40

50

60

Percentage
of Maintenance

effort

Change

30 : 70
Devel : maintenance

Software Testing and Maintenance 12

Major Activities

  Change identification
  What to change, why to change

  Program understanding
  How to make the change, what is the ripple effect

  Carrying out the change and testing
  How to actually implement the change and ensure its

correctness

  Configuration management
  How to manage and control the changes

  Management issues
  How to build a team

7

Software Testing and Maintenance 13

Software Maintenance

  Introduction

  Process Models

  Program Understanding

  Configuration Management

  Management Issues

  Conclusion

Software Testing and Maintenance 14

Development Models

  Code-and-Fix
  Ad-hoc, not well-defined

  Waterfall
  Sequential, does not capture the evolutionary nature of

software

  Spiral
  Heavily relies on risk assessment

  Iterative
  Incremental, but constant changes may erode system

architecture

8

Software Testing and Maintenance 15

Quick-Fix Model

Problem Found

Fix it

Software Testing and Maintenance 16

Boehm’s Model

Management decision

Software in use

Change
Implemented

Evaluation

Approved changes

New version Results

Proposed changes

9

Software Testing and Maintenance 17

Osborne’s Model
Identification of need for change

Change request submitted
Requirements analysis

Change request
rejected approved

Task scheduled
Design analysis

Design review

Code modification

Review of proposed change

Testing

Documentation update

Standards audit

User acceptance

Post-installation review of changes
Task completed

cancellation

Software Testing and Maintenance 18

Iterative Enhancement Model

Analyze existing system

Characterise
Proposed

modifications

Redesign
Current

Version and
implement

10

Software Testing and Maintenance 19

Maintenance Effort (1)

45.3%

54.7%

Non discretionary
Maintenance
•  emergency fixes
•  debugging
•  changes to input data
•  changes to hardware

Discretionary maintenance
•  enhancements for users
•  documentation improvement
•  improving efficiency

software
maintenace

effort

Leintz and Swanson’s Survey

Software Testing and Maintenance 20

Maintenance Effort (2)

Maintenance

Development

effort

analysis specification design implementation testing operation

11

Software Testing and Maintenance 21

Software Maintenance

  Introduction

  Process Models

  Program Understanding

  Configuration Management

  Management Issues

  Conclusion

Software Testing and Maintenance 22

What to understand

  Problem Domain
  Capture necessary domain knowledge from

documentation, end-users, or the program source

  Execution Effect
  Input-output relation, knowledge of data flow, control

flow, and core algorithms

  Cause-Effect Relation
  How different parts affect and depend on each other

  Product-Environment Relation
  How the product interacts with the environment

12

Software Testing and Maintenance 23

Comprehension Process (1)

Read
documentation

Read the
source code

Run the program Dynamic analysis

Static analysis

Software Testing and Maintenance 24

Comprehension Process (2)

  Knowledge base: expertise and background
knowledge

  Mental model: encodes the current understanding

  Assimilation: obtain information from various
sources

13

Software Testing and Maintenance 25

Comprehension Strategies

  Top-down: start with the big picture, and then
gradually work towards understanding the low-level
details
  Bottom-up: start with low-level semantic
structures, and then group them into high-level,
more meaningful structures

  Opportunistic: A combination of top-down and
bottom-up

Software Testing and Maintenance 26

Factors affecting understanding

  Expertise: Domain knowledge, programming skills

  Program structure: modularity, level of nesting

  Documentation: readability, accuracy, up-to-date

  Coding conventions: naming style, design patterns

  Comments: quality, shall convey additional
information
  Program presentation: good use of indentation and
spacing

14

Software Testing and Maintenance 27

Reverse Engineering

  The process of analyzing the source code to
create system representations at higher levels of
abstraction
  Three types of abstraction

  Function abstraction: what it does, instead of how
  Data abstraction: abstract data type
  Process abstraction: communication and synchronization

between different processes

Software Testing and Maintenance 28

Why RE?

  Allow a software system to be understood in terms
of what it does, how it works and its architectural
representation

  Recover lost information
  Facilitate migration between platforms
  Improve or provide documentation
  Provide alternative views
  Extract reusable components
  Cope with complexity

15

Software Testing and Maintenance 29

Levels of RE

Specification

Design

Implementation Re-documentation

Re-documentation

Re-documentation

Reverse engineering

Design recovery

Spec recovery

Software Testing and Maintenance 30

Software Maintenance

  Introduction

  Process Models

  Program Understanding

  Configuration Management

  Management Issues

  Conclusion

16

Software Testing and Maintenance 31

Why CM?

  Critical to the management and maintenance of any
large system

  Suppose that a customer reports a bug. Without proper
control, it may be impossible to address this problem.
(Why?)

  CM allows different releases to be made from the same
code base

  CM also allows effective team work, auditing, and
accounting

Software Testing and Maintenance 32

Major activities

  Identification of components and changes

  Control of the way changes are made

  Auditing changes – making the current state
visible

  Status accounting – recording and documenting all
activities that have taken place

17

Software Testing and Maintenance 33

The Big Picture

Tracking defects

Quality assurance

Configuration Mgmt

Version control
Building

Environment mgmt
Process control

Process Mgmt

Project Mgmt Policy Enforcement

Software Testing and Maintenance 34

Version Control (1)

Object 1
Ver 1

Object 2
Ver 1

Object 3
Ver 1

Object 4
Ver 1

Object 1
Ver 2

Object 2
Ver 2

Object 3
Ver 2

Object 4
Ver 2

Object 2
Ver 3

Object 3
Ver 3

Object 3
Ver 4

Release 1.0

Release 2.0

Release 3.0

18

Software Testing and Maintenance 35

Version Control (2)

Object 1

Ver 1.0

Ver 2.0

Ver 3.0

Ver 2.1 Ver 2.2

Ver 3.1

Software Testing and Maintenance 36

Building

  One of the most frequently performed operations

  Incremental building: only rebuild objects that
have been changed or have had a dependency change

  Consistency: must use appropriate versions of the
source files

  Makefiles are often used to declare dependencies
between different modules

19

Software Testing and Maintenance 37

Change Control

  Decide if a requested change should be made
  Is it valid? Does the cost of the change outweigh its

benefit? Are there any potential risks?

  Mange the actual implementation of the change
  Allocate resources, record the change, monitor the

progress

  Verify that the change is done correctly
  Ensure that adequate testing be performed

Software Testing and Maintenance 38

Change Request Form

Name of system:
Version:
Revision:
Date:
Requested by:
Summary of change:
Reasons of change:
Software components requiring change:
Documents requiring change:
Estimated cost:

20

Software Testing and Maintenance 39

Documentation

  User Doc: Describe system functions without
reference their implementation

  Installation manual, user manual, reference manual, admin
manual, etc.

  System Doc: System description from the
developer’s perspective

  Requirements, specification, high-level/low-level design,
test plans

Software Testing and Maintenance 40

Producing Quality Documentation

  Writing style: adhere to guidelines, be clear

  Adhering to document standards

  Standards and quality assessment
  For example, documents need to be reviewed and signed

off

  Maintaining consistency
  Design documents should be consistent with actual

implementation code
  Documents that reference each other should be

consistent

21

Software Testing and Maintenance 41

Software Maintenance

  Introduction

  Process Models

  Program Understanding

  Configuration Management

  Management Issues

  Conclusion

Software Testing and Maintenance 42

Responsibilities

  Maximize productivity
  Personnel management

•  Choose the right people, motivate the team, keep the team
informed, allocate adequate resources

  Organizational mode
•  Combined or separate maintenance teams, module

ownership, change ownership, work-type or application-type

22

Software Testing and Maintenance 43

Motivating the Team

  Rewards: financial rewards, promotion

  Supervision: technical supervision and support for
inexperienced staff

  Assignment patterns: rotate between maintenance
and development

  Recognition: properly acknowledge one’s
achievements

  Career structure: provide room for career growth

Software Testing and Maintenance 44

Education and Training

  Objective: To raise the level of awareness
  Not a peripheral activity, but at the heart of an

organization

  Strategies
  University education
  Conferences and workshops
  Hands-on experience

23

Software Testing and Maintenance 45

Module Ownership

  Pros
  The module owner develops a high level of expertise in

the model

  Cons
  No one is responsible for the entire system
  Workload may not be evenly distributed
  Difficult to implement enhancements due to unknown

dependencies

Software Testing and Maintenance 46

Change Ownership

  Pros:
  Tends to adhere to standards set for the entire

software system
  Integrity of the change is ensured
  Changes can be code and tested independently
  Changes inspection tends to be taken seriously

  Cons:
  Training of new personnel can be difficult
  Individuals do not have long-lasting responsibilities

24

Software Testing and Maintenance 47

Software Maintenance

  Introduction

  Process Models

  Program Understanding

  Configuration Management

  Management Issues

  Conclusion

Software Testing and Maintenance 48

Conclusion

  Maintenance a critical stage in the software
lifecycle, and must be managed carefully

  Unlike new development, maintenance must work
within the constraints of the existing system

  Central to maintenance is the notion of change.
Changes must be managed and controlled properly.

  Not only the code needs to be maintained, but also
the documentation.

