
1

Advanced Topics in Software Engineering 1

Introduction

  Overview

  Motivating Examples

  Interleaving Model

  Semantics of Correctness

  Testing, Debugging, and Verification

Advanced Topics in Software Engineering 2

Concurrent Programs

  Characterized by a set of cooperative processes
or threads that can execute in parallel.

  Three types of concurrent programs
  multi-threaded programs: multiple threads running in a

single process space
  distributed programs: multiple processes running in a

distributed environment
  distributed multi-threaded programs: multiple processes

running a distributed environment, and each process
consists of multiple threads

2

Advanced Topics in Software Engineering 3

Why Concurrency?

  Better utilization of resources, which often leads
to increased computation efficiency

  Provides a natural model for many problem domains
that are inherently concurrent

  Allows computation to be distributed in a network
environment

So what is the catch?

Advanced Topics in Software Engineering 4

How different?

  Three fundamental issues in concurrent
programming

  nondeterminism
  synchronization
  communication

  Note that synchronization can be considered as a
special case of communication.

3

Advanced Topics in Software Engineering 5

Nondeterminism

  An inherent property of concurrent programs -
two executions of the same program with the same
input may produce different, and sometimes
unpredictable, results.

  Caused by one or more of the following factors:
  the unpredictable rates of progress of threads
  the unpredictable network latency
  the explicit use of nondeterministic programming

constructs

Advanced Topics in Software Engineering 6

Synchronization

  Enforces a certain order on tasks that are
performed by different threads/processes

  Mutual exclusion ensures that critical sections in
different threads do not execute at the same time.

  Conditional synchronization delays a thread until a given
condition is true.

  Mutual exclusion is a special case of conditional
synchronization.

4

Advanced Topics in Software Engineering 7

Communication

  Exchange data between threads/processes that
are running in parallel

  shared variables - a thread writes into a variable that is
read by another thread.

  message passing - a thread sends a message that is
received by another thread.

Advanced Topics in Software Engineering 8

Process and Thread

In general, a process is a program in execution. A
thread is a unit of control within a process.

When a program is executed, the operating system
creates a process.

A process starts with a running thread, called the
“main” thread, which executes the “main function” of
the program.
Other threads can be created by the main thread,
and these threads can create other threads.

5

Advanced Topics in Software Engineering 9

Process vs. Thread

A process has its own stream of instructions and its
own logical address space.

A thread has its own stream of instructions, but
shares the same logic address space with other
threads in the same process.
This difference has significant implications on how
processes and threads communicate.

Advanced Topics in Software Engineering 10

Introduction

  Overview

  Motivating Examples

  Interleaving Model

  Semantics of Correctness

  Testing, Debugging, and Verification

6

Advanced Topics in Software Engineering 11

Example 1

Assume that integer x is initially 0.

Thread 1 Thread 2 Thread 3

(1) x = 1; (2) x = 2; (3) y = x;

What is the final value of y?

  (1) (2) (3)

  (2) (1) (3)

  (3) (2) (1)

Advanced Topics in Software Engineering 12

Example 2

Assume that y and z are initially 0.

Thread 1 Thread 2
x = y + z y = 1;
 z = 2;

What is the final value of x?

7

Advanced Topics in Software Engineering 13

1.  (1), (2), (3), (4), (5)

2.  (4), (1), (2), (3), (5)

3.  (1), (4), (5), (2), (3)

4.  (4), (5), (1), (2), (3)

Example 2

Thread 1
(1)  load r1, y
(2)  add r1, z
(3)  store r1, x

Thread 2

(4) assign y, 1

(5) assign z, 2

Advanced Topics in Software Engineering 14

Example 3

Assume that the initial value of x is 0.

Thread 1 Thread 2

x = x + 1; x = 2;

What is the final value of x?

8

Advanced Topics in Software Engineering 15

Example 3

Thread 1

(1)  load r1, x

(2)  add r1, 1

(3)  store r1, x

Thread 2

(4) assign x, 2

1.  (1), (2), (3), (4)

2.  (4), (1), (2), (3)

3.  (1), (2), (4), (3)

Advanced Topics in Software Engineering 16

Example 4
Consider a linked list of Nodes, pointed to by variable first, and
accessed by methods deposit and withdraw.

class Node {
 public int value;
 public Node* next;
}
Node* first;
void deposit (int value) {
 Node p = new Node (); // (1)
 p.value = value; // (2)
 p.next = first; // (3)
 first = p; // (4)
}

int withdraw () {
 int value = first -> value; // (5)
 first = first -> next; // (6)
 return value; // (7)
}

Can you find a scenario which
produces unexpected results?

9

Advanced Topics in Software Engineering 17

Example 4
Suppose that the linked list pointed to by first is not empty and that methods
deposit and withdraw are executed concurrently by two threads. In the
following possible scenario, the deposited item has been lost.

int value = first -> value; (5) in withdraw
Node p = new Node (); (1) in deposit
p.value = value; (2) in deposit
p.next = first; (3) in deposit
first = p; (4) in deposit
first = first -> next; (6) in withdraw
return value; (7) in withdraw

Advanced Topics in Software Engineering 18

Introduction

  Overview

  Motivating Examples

  Interleaving Model

  Semantics of Correctness

  Testing, Debugging, and Verification

10

Advanced Topics in Software Engineering 19

They actually take turns ...

A multithreaded process consists of a set of threads
that execute simultaneously.

However, a single CPU can only execute one
instruction (from one thread) at a time.

In general, each thread receives a time slice of the
CPU. Threads that execute simultaneously actually
take turns to run.

Advanced Topics in Software Engineering 20

Scheduler

A hardware timer is used to generate interrupts at
predetermined interval, which interrupts the
execution of the current thread.
The operating system uses a scheduler program to
determine which thread will take over the CPU for
the next time slice.

A context switch is then performed between the
current thread and the next thread.

11

Advanced Topics in Software Engineering 21

Atomic Actions

In principle, atomic actions are actions whose
intermediate states are not visible to other threads.

A context switch can occur in the middle of an
atomic action, but another thread either sees the
state that is before or after the action, but not in
between.

Advanced Topics in Software Engineering 22

Interleaving View

From the CPU’s perspective, simultaneous execution
of multiple threads is indeed an interleaving of
atomic instructions of individual threads.
This interleaving view can be generalized to the case
of multiple processors or computers.
An alternative to the interleaving model is the so-
called partial order or happened-before model, which
we will discuss later in the class.

12

Advanced Topics in Software Engineering 23

Instructions vs. Statements

In general, when we write concurrent programs, we
consider machine instructions are atomic actions.

Statements in high level languages are usually
translated into a stream of machine instructions, and
thus can not be considered as atomic actions.

Advanced Topics in Software Engineering 24

Introduction

  Overview

  Motivating Examples

  Interleaving Model

  Semantics of Correctness

  Testing, Debugging, and Verification

13

Advanced Topics in Software Engineering 25

Not straightforward ...

Unlike sequential programs, the correctness of
concurrent programs is not straightforward.

Furthermore, nondeterministic execution makes it
difficult to ensure the correctness of concurrent
programs.

Advanced Topics in Software Engineering 26

Every interleaving counts!

Given an input, multiple executions of a concurrent
program may produce different results.

A concurrent program is correct if and only if it is
correct under ALL interleavings.

14

Advanced Topics in Software Engineering 27

Safety & Liveness

There are two types of properties:

  Safety: Nothing bad will happen.

  Liveness: Something good will eventually happen.

Advanced Topics in Software Engineering 28

Usually domain specific ...

Correctness is usually a domain specific concept. It
depends on the functional requirements of a
program.
However, deadlock, livelock, and starvation are
properties that are important to all concurrent
programs.

15

Advanced Topics in Software Engineering 29

Deadlock

A thread T is said to be deadlocked if T is blocked,
and will remain blocked forever, regardless of what
other threads will do.
As an example, assume that P contains threads T1
and T2, and the following sequence is executed:
  T1 waits to receive a message from T2

  T2 waits to receive a message from T1

Both T1 and T2 will remain blocked forever.

Advanced Topics in Software Engineering 30

Livelock

A thread is said to be livelocked if the following
conditions are satisfied, regardless of what other
threads will do:
  The thread will not terminate or deadlock.

  The thread will never make progress.

16

Advanced Topics in Software Engineering 31

Starvation

Starvation refers to one possible execution where
one process dominates, not allowing other processes
to progress.

Advanced Topics in Software Engineering 32

Introduction

  Overview

  Motivating Examples

  Interleaving Model

  Correctness Semantics

  Testing, Debugging, and Verification

17

Advanced Topics in Software Engineering 33

Failure & Faults

A failure is an observed departure of the external
result of software operation from software
requirements or user expectations
A fault is a defective, missing, or extra instruction
or a set of related instructions that is the cause of
one or more actual or potential failures.

Advanced Topics in Software Engineering 34

Testing & Debugging

Testing is to find program failures; debugging is to
locate and correct program faults.

The conventional approach to testing and debugging a
program is as follows:
1.  Select a set of test inputs.

2.  Execute the program once with each input and check the test results.

3.  If a test input finds a failure, execute the program again with the same input
to locate and correct the fault that caused the failure

4.  After the fault has been located and corrected, execute the program again
with each of the test inputs to verify that the fault has been corrected and
that no new faults have been introduced.

18

Advanced Topics in Software Engineering 35

Problems and Issues

Unfortunately, the conventional approach breaks
down for concurrent programs. Why?

Let P be a concurrent program.
  When testing P with input X, a single execution is insufficient to determine
the correctness of P with X.

  When debugging an erroneous execution of P with input X, there is no
guarantee that this execution will be repeated by executing P with X.

  After P has been modified to correct a fault, one or more successful
executions of P with X do not imply that the fault has been corrected.

Advanced Topics in Software Engineering 36

Problems and Issues

To solve these problems, we need to address the
following issues:

  How to replay concurrent executions?

  How to capture enough information, but as little as
possible, for replay?

  How to determine sequence feasibility and
validity?

  How to deal with the probe effect?

19

Advanced Topics in Software Engineering 37

CCS (Calculus of Communicating Systems)

Testing can prove the presence of bugs, but not
their absence.

CCS provides a formal notation that can be used to
analyze and reason about the correctness of a
system.
At the core of CCS are a number of equational laws
and several notions of equivalence that allows one to
reason about the behavior of a concurrent system.

Advanced Topics in Software Engineering 38

Review

  A concurrent program consists of a number of
threads that execute in parallel.

  There are three fundamental issues in concurrent
programming: nondeterminism, synchronization and
communication.
  A concurrent execution can be characterized as an
interleaving of atomic actions.

20

Advanced Topics in Software Engineering 39

Review

  A concurrent program should be free from
deadlock, livelock, and/or starvation.

  Testing and debugging of concurrent programs are
difficult due to nondeterminism.

  Testing and debugging cannot provide total
confidence about program correctness.

  CCS provides a mathematical treatment of
concurrent programs.

