
The ADC66 Wireless ADC Board for the NRL-66 Machinery
Gergely V. Záruba

zaruba@uta.edu

Document Version: 2007-08-29

Abstract – This document describes the functionality, the hardware and software components of
the NRL-66 ADC board that was developed during the author’s summer research stay at the
NRL Computational Multiphysics Laboratory, lead by Dr. John Michopoulos.

1. Introduction
The NRL-66 ADC (short: ADC66) board has been developed to enable wireless reading of

the six Wheatstone-bridge load cells of the NRL-66 machinery. However, it was built for a
specific purpose, one of the design goals was to keep it generic and expandable, so it can be used
for obtaining digital reading from other sources or even to provide output to digitally driven
actuators. In general, all active components (and the bridge) are driven by 3.3VDC obtained
either from the USB interface (USB option) or from an external power adapter or battery
(wireless option).

1.1. ADC66 Architecture
The general architecture of the ADC66 board is depicted in Figure 1, and consists of:

• A digital interface to the host machine, that is jumper selectable between an 802.15.4
compliant wireless-to-serial module (XBee) and a USB to serial module. The former
option requires a wireless transceiver to be plugged into the host computer which is a
secondary transceiver board that has been designed and built (TB66). The TB66 is
also used when performing the initial programming of the XBee modules.

• A “master” microcontroller (short: 1611) is realized by TI’s MSP430F1611 [10]
running on an 8MHz crystal clock, interfacing serially (UART) to the digital interface
module and providing an I2C interface to all the slave microcontrollers (see below).
Port-1 of the 1611 is used to address the slaves individually through a (or several)
demultiplexer (e.g., 74HC4514). This is needed to enable all the slaves to be
programmed by the same code (and sending broadcast messages to them with their
respective ports enabled to communicate their address to them). The 1611 has also
eight LED-s (Port-2) attached for status displaying purposes.

• Slave microcontrollers (short: 2013) are used to obtain analog data in a digital form
and do basic filtering on such data.
Currently, the slaves are six MSP430F2013 [11] 16-bit sigma delta ADC
microcontrollers with I2C support (but could be any I2C compliant microcontrollers).
Each slave has an associated RJ45 connector that connects to one of the Wheatstone
bridged load cells through a simple RC low-pass filter. The slaves have a single,
shared JTAG connector for programming and need “jumper-magic” to be
programmed.

USB

USB
OR

UART

USB to UART

ADC66 board

1611 Master

Own JTAG

UART

JP5,6

LED “Display”

Port-2
USART1

1611 Slave
1611 Slave

1611 Slave
1611 Slave

1611 Slave
2013 Slaves

I2C (USART0)

RJ45
w LEDsRJ45

w LEDsRJ45
w LEDsRJ45

w LEDsRJ45
w LEDsRJ45

w LEDsPower

Sl
av

e
JT

A
G

Host

Sl
av

e
ju

m
pe

r a
rr

ay

Addr.
Demux

Port-1

P3.0 Trigger

5V-8V DC

USB

USB
OR

UART

USB to UART

ADC66 board

1611 Master

Own JTAG

UART

JP5,6

LED “Display”

Port-2
USART1

1611 Slave
1611 Slave

1611 Slave
1611 Slave

1611 Slave
2013 Slaves

I2C (USART0)

RJ45
w LEDsRJ45

w LEDsRJ45
w LEDsRJ45

w LEDsRJ45
w LEDsRJ45

w LEDsPower

Sl
av

e
JT

A
G

Host

Sl
av

e
ju

m
pe

r a
rr

ay

Addr.
Demux

Port-1

P3.0 Trigger

USB

USB
OR

UART

USB to UART

ADC66 board

1611 Master

Own JTAG

UART

JP5,6

LED “Display”

Port-2
USART1

1611 Slave
1611 Slave

1611 Slave
1611 Slave

1611 Slave
2013 Slaves

I2C (USART0)

RJ45
w LEDsRJ45

w LEDsRJ45
w LEDsRJ45

w LEDsRJ45
w LEDsRJ45

w LEDsPower

Sl
av

e
JT

A
G

Host

Sl
av

e
ju

m
pe

r a
rr

ay

Addr.
Demux

Port-1

P3.0 Trigger

5V-8V DC

Figure 1. Overview of ADC66 Architecture

1.2. Choice of Microcontrollers
The choice of the master and slave microcontrollers was made based on conversations with

Dr. John Hermanson. The main reason for selecting the 1611 was the available Flash and RAM
as well as the need for two USART interfaces. The reason behind selecting the 2013 as the slave
was due to it 16-bit sigma-delta differential analog to digital input, its I2C capability and its form
factor and price. The 2013 is essentially used as a programmable 16-bit ADC.

The FT232R IC from FTDI has been selected as the serial to USB converter for its wide
driver support, price and performance. The XBee module has been selected for its versatility and
price/performance.

2. Host – ADC66 Interface
The Host to ADC66 interface shows up as a serial port on the host regardless of the

connection (wireless or the USB) option used; both of the connection options use the same serial
to USB converter chip from FTDI. The drivers are readily available both on Widows and
late-version Linux machines but if needed can be downloaded from [3]. The settings of the
serial (COM) port are: 57.6kbaud, no software or hardware flow control, 8 bits, no start bit and 1
stop bit (8-N-1).

A “general” (7,4) Hamming code is used for communication between the host and the 1611.
The (7,4) code encodes 4 bits into 7 bits and enables the correction of one. To transfer bytes,
they need to be cut into lower 4-bits and higher 4-bits parts, each encoded with the (7,4) code.
The “lower-4bits encoded into 7-bits” is transferred before the “higher 4-bits encoded into 7-
bits”. Since on the serial bus an 8 bit transmission is used and code words are only seven bits, we
can create special code word sequences where the left-most bit is set one thus being able to use
easy in-band signaling for frame-starts and -ends. Table 1 shows all code words and special
sequences used. Appendix 1 has C code snippets implementing the (7,4) encoding, and error-
correcting decoding. As an example, if we want to transmit a character “C” ASCII Hex: 0x43,
we would need to transmit the following two codes: 0x1C 0x25 (corresponding to 3 {lower 4-
bits} and 4 {upper 4-bits}).

Each frame transmitted between host and the ADC66 starts with the code word for
START_FRAME and ends with the code word for END_FRAME. Frames from the Host to the

ADC66 are called commands while frames traveling in the other direction are called responses.
The very first byte assembled from the two code words following a START_FRAME describes
the type of the command (command char) or response (response char).

Table 1. (7,4) codes and other code words used.
Data (7,4) code dec (7,4) code hex Data (7,4) code dec (7,4) code hex

0 0 0x00 9 73 0x49

1 15 0x0F 10 85 0x55

2 19 0x13 11 90 0x5A

3 28 0x1C 12 99 0x63

4 37 0x25 13 108 0x6C

5 42 0x2A 14 112 0x70

6 54 0x36 15 127 0x7F

7 57 0x39 START_FRAME 129 0x81

8 70 0x46 END_FRAME 241 0xF1

Whenever the 1611 is reset, a short comment-type message is relayed to the host reporting its
existence. During the compilation of the 1611 code a verbose mode can be turned on (by
uncommenting the #define VERBOSE_MODE compiler directive in global.h and then remaking
the code by make clean; make). If the 1611 works in a verbose mode, then most of the
commands send to it will also result in human readable comment-type responses. For example a
“Hello” command will respond with a “HELLO” comment in addition to a general response
message.

The first command to the ADC66 should be a set-up command. Until such a command is
received and the slaves are set up many of the other commands will fail.

2.1. Host Commands
Each command issued by the host will generate a two byte response, where the first byte is

whether or not the command succeeded and the second byte corresponds to the command.
Command types are summarized in Table 2 (number of parameters are without escape characters
and command/report character).

2.2. ADC66 Responses
Response types are summarized and described in Table 3.

2.3. Examples
Example one: checking whether ADC66 is alive

command issued: H (0x48)
transmitted frame: 0x81 0x46 0x25 0xF1
successful response: OH (0x4F 0x48)
corresponding response frame: 0x81 0x7F 0x25 0x46 0x25 0xF1

Example two: setting up 1 slave

command issued: S_ (0x53 0x01)

transmitted frame: 0x81 0x1C 0x2A 0x0F 0x00 0xF1
successful response: OS (0x4F 0x53)
corresponding response frame: 0x81 0x7F 0x25 0x1C 0x2A 0xF1

Example three: requesting reading from salve #5

command issued: A_ (0x41 0x05)
transmitted frame: 0x81 0x0F 0x25 0x2A 0x00 0xF1
successful response: V_ _ _ _ _ (0x56 0x1F 0x05 0x32 0x8C B3)
corresponding response frame: 0x81 0x36 0x2A 0x7F 0x0F 0x2A 0x00 0x13 0x1C

0x63 0x46 0x1c 0x5A 0xF1
response’s meaning: reading sequence number: 31. ADC buffer of slave 5 is 35,890

which was assembled from 179 readings

Table 2. Command types.
cmd. char # params Description

‘H’ 0 Hello; request an “alive” response.

‘S’ 1 Set-up; parameter is the number(!) of slaves to set up. This will force
the 1611 to set-up the slaves, i.e., let the slaves know their address. It
will generate “parameter” number of responses and comments.

‘A’ 1 Get reading; request the ADC buffer value of the slave pointed by
the parameter (IDs start from 0)

‘P’ 2 Periodic; requests the 1611 to poll the (first parameter) slave
periodically for conversion results and relay those results to the host.
The second parameter is the period in 50ms increments. This is the
default behavior.

‘R’ 2 Set Rate; will force the (first parameter) slave to set its running
average learning rate to {(second parameter)/255}. The default value
is 13, i.e., new samples have a weight of 0.05098.

‘T’ 0 Trigger; will ask the 1611 to generate a port-1 interrupt at the slaves,
forcing them to reset their running average buffers.

‘N’ 2 Number of Conversions; will request the (first parameter) slave to
restrict the number of samples averaged to the second parameter. It
only is enforced if the mode of operation is “single”. Default value is
one.

‘1’ 1 Single Mode; forces the (first parameter) slave into single mode, i.e.,
after taking a “parameter” amount of samples the respective 2013
turn off its ADC.

‘9’ 1 Continuous Mode: forces the (first parameter) slave into continuous
mode, i.e., the running average is continuously updated. This is the
default mode.

‘0’ 1 Soft Reset: resets the number of samples (thus the ADC buffer) of
the slave pointed to by the first parameter. This may be used as an
asynchronous trigger.

Table 3. Response types.
resp. char # bytes Description

‘C’ many Comment; the rest of the frame contains ASCII characters with
“human understandable” information.

‘V’ 5 Values; the first byte returned is a sequence number running from 0
to 127. The second byte is the ID of the slave. The third and fourth
bytes are the lower and upper byte part of the 16-bit ADC buffer
respectively. The fifth byte is the number of samples used in
averaging the ADC buffer.

If periodic reporting is enabled these messages can be generated
asynchronously (i.e., without a preceding command).

‘E’ 1 Error; when receiving a command, and encountering an error in the
command (e.g., wrong command length, decoding error), this
message will be relayed with the original command char following
‘E’.

If there was a general error (e.g., not even the command character
was understood), then a character ‘G’ (for general) is sent back.

‘O’ 1 OK; behaves similarly to the Error response except it signals an
acknowledgment to a correctly received command. The exception is
the “Get Reading” command for which there is no OK response.

3. Master – Slave Internal Interfaces
There are three interfaces between the 1611 master and the 2013 slaves:

1. The data interface between the 1611 and the 2013-s is an I2C [6] physical interface for
which the 1611 has native register support and the 2013 can be programmed to
support.

2. The trigger interface is a single common port (P3.0 on the 1611 and P1.4 on the
2013-s) that the 1611 can use to force conversion at the slaves. This means that if P3.0
is raised an interrupt will be generated in all slaves, forcing them to reset their buffers
and restart their ADC-s.

3. The address interface is Port-1 of the 1611 demultiplexed to individual 2013-s on their
P1.2 input. P1.7 of the 1611 is used to disable the demultiplexing, thus a total of 126
slaves are possible (address 0 is the broadcast address, and 127 is the master). This
feature enables that all 2013-s be programmed with the same code; the 1611 will send
a broadcast I2C message to a port-1 addressed slave to set its I2C address. For example
if Port-1 of 2013 outputs 0x03 it means that slave #4 (as salves are numbered from
zero but their addresses start from 1) is going to receive an I2C broadcast
communication telling it that it indeed is slave #4. To disable demultiplexing the 1611
should keep the MSB of Port-1 high.

3.1. I2C Communication
Due to the lack of memory in the 2013 there is no error detection or correction on the I2C bus.

However, the clock generation and the acknowledgment bits are somewhat countering the need
for such error detection/correction scheme.

The I2C standard divides modules on the bus by their function into four categories: master
transmitter (clock is generated, slave is addressed, slave is written, acks are received), master
receive (clock is generated, slave is addressed, slave is read, acks are transmitted), slave receiver
(clock is received, address is received, data is received, acks are sent), and slave transmitter
(clock is received, address is received, data is transmitted, acks are received). Every eight bits of
data must be followed by an acknowledgment bit (pulling SDA low) from the receiver. The first
bit of the communication describes whether the master is in receive or transmit mode while the
remaining seven bits designate the address of the slave addressed.

In the ADC66, the only I2C master on the bus is the 1611, i.e., none of the 2013-s can
generate the clock or initiate data transfer. The 1611 can work both as an I2C master transmitter
in which case it will send commands to a 2013 slave or as an I2C master receiver. Regular
commands transmitted from the 1611 when it is in a master transmitter state are summarized in
Table 4. When the 1611 is in a master receiver state, it implicitly requests the addressed slave to
report its ADC buffer and buffer size. The report size (when the 1611 is in a master receiver
mode) is always three bytes long. The first byte is the low-byte of the ADC buffer, the second
byte is the high-byte while the third byte corresponds to the buffer size.

When the 1611 is in a master transmitter state and sends a broadcast message, it will always
enable one of the slaves’ P1.2 ports by its own corresponding Port-1. In this case the payload is
always one byte long and carries the future I2C address of the P1.2 enabled slave. One
technicality to remark here upon is that slave numbers are internally increased by one, i.e.,
slave#0 will have address: 1, slave#1 will have address: 2, etc.

4. Hardware
This section outlines the hardware design, and hardware features of both the ADC66 board

and the TB66 transceiver module.

4.1. ADC66 Hardware
The main architecture of the ADC66 was given in Figure 1. In this section we provide pictures

of the real hardware, describe jumper settings, and programming procedures of both the 1611
and the 2013-s. A schematic for the hardware can be found in Appendix 2 (made partially with
Kicad), while Appendix 3 shows locations of various components on the board. Figure 2 depicts
the ADC66 board for our “aesthetic pleasure”. Figure 3 shows the ADC66 board with various
jumpers, connectors, and LEDs identified (with reference to the schematics).

4.1.1. DC
The DC power jack is used to supply the ADC66 with power if not operating from power

drawn from the USB connector. The DC plug can take voltages from 5VDC to 8VDC with the
positive terminal located in the middle of the jack.

4.1.2. USB
The USB connector is a mini USB 2.0 socket. It can be used to talk to the ADC66 (if

respective jumpers are set) and/or to provide power to the ADC66.

Table 4. I2C commands.
cmd. char #params Description

0x01 1 Set Conversion; the parameter is the number of conversions to use in
the running average ADC buffer if operating in a “single” mode.

0x02 1 Set Rate; the parameter is a function of the learning rate of the running
average buffer: {parameter}/255

0x04 0 Set Continuous; set the slave to continuous operation mode.

0x08 0 Set Single; set the slave to single operation mode.

0x10 0 Reset; reset the slaves ADC buffer and counter.

Figure 2. ADC66 Board (unedited).

4.1.3. JPP
The JPP jumper selects the power source for the ADC66. If it is jumpered on “1-2” (as shown

in the figure), the DC power jack is selected as the power source. If it is jumpered “1-3”, then the
USB interface provides the power. A word of caution: the current drawn from the USB
connector can be in the order of 0.5A. Even if the ADC66 is set-up to use USB based
communication. the JPP may be plugged to “1-2” powering the ADC66 from the DC plug.

4.1.4. JPR and JPTT
JPR and JPT determine the method of communication with the host; they should always be set

together. If set to “1-2” (as shown in the figure) wireless communication (the XBee module) is
selected. If they are set to “1-3” the USB communication method is selected.

4.1.5. RXLED and TXLED
If USB communication is enabled, the RXLED and TXLED will flash whenever data is

received or transmitted on the USB interface.

JPP (3 1 2) JPST (pin 1) JPSOUT JPSIN

JPMRS

SWS1

JP
T

 (2
 1

 3
)

JPR (2 1 3)

SW
M

1
T

X
L

E
D

R
X

L
E

D

JPMOUT JPMIN JPMT (pin 1)

JPSCL
(1 2)
(3 4)
(5 6)
(7 8)
(9 10)
(11 12)

JPTST
(1 2)
(3 4)
(5 6)
(7 8)
(9 10)
(11 12)

QL1-QL8

RJ0 RJ1 RJ2 RJ3 RJ4 RJ5 NC NC

USB

DC

EXP CNN (pin 1)

JPP (3 1 2) JPST (pin 1) JPSOUT JPSIN

JPMRS

SWS1

JP
T

 (2
 1

 3
)

JPR (2 1 3)

SW
M

1
T

X
L

E
D

R
X

L
E

D

JPMOUT JPMIN JPMT (pin 1)

JPSCL
(1 2)
(3 4)
(5 6)
(7 8)
(9 10)
(11 12)

JPTST
(1 2)
(3 4)
(5 6)
(7 8)
(9 10)
(11 12)

QL1-QL8

RJ0 RJ1 RJ2 RJ3 RJ4 RJ5 NC NC

USB

DC

EXP CNN (pin 1)

Figure 3. Jumpers, connectors, and LEDs on ADC66.

4.1.6. QL1-QL8
These are general purpose LEDs driven from Port-2 of the 1611. They can signal the status of

the system or help with debugging. Currently QL1 is set to flash periodically, indicating that the
module is operational.

4.1.7. RJ0-RJ5
RJ0 to RJ5 are RJ45 receptacles to connect to the measured Wheatstone bridges. The pin-out

is shown in the schematics in Appendix 2. Each RJ45 connector has two LEDs built into its case,
driven by the corresponding 2013-s (port-2). The yellow LED (Y-LED) is flashing very quickly
(seems to be on) when the corresponding 2013’s ADC is operational. The green LED will flash
slowly (about once in a second) if the 2013 is powered and will flash more rapidly (about twice a
second) if the corresponding 2013 has received its address.

4.1.8. SWM1 and JPMRS
The SWM1 switch and the JPMRS jumper are used to reset the 1611. The jumper can be used

to keep the 1611 switched off (in a reset state), a requirement when programming the slaves.

4.1.9. SWS1
SWS1 may be used to reset all 2013s, as their respective reset pins are connected together.

4.1.10. EXP CNN
The expansion connector can be used to connect daughter boards to the ADC66 motherboard.

Such a daughterboard is detailed in Appendix 5. The pin-out of the expansion connector is given
in Table 5.

Table 5 Expansion connector pin-out.
Pin Function Pin Function Pin Function Pin Function
1 SBUS-6 2 TEST [11] 3 SBUS-7 4 SCL/P1.6 [8]
5 SBUS-8 6 SCLK/P1.5 [7] 7 SBUS-9 8 SMCLK/P1.4 [6]
9 SBUS-10 10 SDA/P1.7 [9] 11 SBUS-11 12 RESET [10]
13 SBUS-12 14 P1-BUS P1.0 15 SBUS-13 16 P1-BUS P1.1
17 SBUS-14 18 P1-BUS P1.2 19 SBUS-15 20 P1-BUS P1.3
21 N/C 22 P1-BUS P1.4 23 N/C 24 P1-BUS P1.5
25 N/C 26 P1-BUS P1.6 27 N/C 28 P1-BUS P1.7
29 GND 30 +3.3V 31 GND 32 +3.3V

4.1.11. Programming the 1611 Master
The code for the 1611 has been written to be compiled with mspgcc [7]. We have used an

OLIMEX made USB JTAG programmer [8] (with an OLIMEX made MSP430F161 breakout
board [9]). The general 14pin JTAG programming connector is JPMT. The JPMIN and
JPMOUT jumpers are mutual, only one and exactly one of them needs to be jumpered during
programming. If JPMOUT is used, then power to the ADC66 has to be supplied through either
the USB or the DC jack (see their discussion above). If JPMIN is used then all(!) external power
needs to be disconnected and it is recommended that all RJ connectors are disconnected as well
(so they do not draw power from the programming unit). After programming, it is recommended
to apply a reset. We have mostly used the JPMOUT option.

4.1.12. Programming the 2013 Slaves
Programming the slaves is a little more involved as they are connected together and share a

JTAG connector, yet only one unit a time can be programmed. As the 2013-s have their pins
multiplexed (i.e., among other with functions of the I2C) the 1611 has to be held in reset state
during programming (e.g., by placing a jumper on JPMRS or holding SWM1 down).

The JTAG connector of the 2013-s is JPST, with JPSIN and JPSOUT as the power selectors
for programming (see description of JPMIN and JPMOUT in the previous section). It is
recommended that the JPMIN option is used with all(!) other connectors (including RJ45
connectors) to the ADC66 disconnected. We have used a TI MSP430-FET430UIF debugger
programmer [13] with the IAR Kickstart [12] suite to program the 2013-s (as neither gcc nor the
OLIMEX programmer do fully support the MSP430F2013).

Figure 3 shows the jumper settings of JPSCL and JPTST when the board is not being
programmed, i.e., all jumpers on JPSCL need to be on (“1-2”, “3-4”, “5-6”, “7-8”, “ 9-10”,

“11-12”) and no jumper on JPTST need to be placed. This is needed to connect all 2013 I2C SCL
pins together that need to be separated for programming.

To program a slave some of its pins need to be connected to JPST (e.g., TEST) while some
pins of other slaves need to be disconnected (i.e., P1.6 I2C SCL). After the JTAG connector has
been placed on the JPST and the 1611 has been disabled, we need to select the slave to be
programmed. This is accomplished by jumpering JPSCL and JPTST appropriately. To program
slaves exactly one jumper can be on JPSCL and exactly one jumper can be on JPTST at
corresponding positions, e.g., “1-2” on both of them correspond to slave number zero (closest to
the 1611), “3-4” on both of them correspond to slave number one, “5-6” on both of them
correspond to slave number two, “7-8” on both of them correspond to slave number three, “9-10”
on both of them correspond to slave number four, “11-12” on both of them correspond to slave
number five. Figure 4 shows jumper setting for programming slave number one (note the jumper
on JPMRS as well).

A word of advice: in order to be able to program the 2013 slaves this way, one has to make
sure that none of them use their JTAG related pins (P1.4, P1.5, P1.6, P1.7) as outputs. A new
2013 may need to be programmed separately (out of the ADC66) first if it had a non-compliant
code on it before.

Figure 4. Programming slave number one.

4.1.13. XBee Transceiver Module
A new XBee module needs to be programmed before placing it into the ADC66. This

programming can be done using the TB66 board with the instructions provided in Section 4.2.1.

4.1.14. Power Requirements
All components of the circuitry have been chosen to operate at 3.3VDC. Although the TI

microcontrollers are low-power devices they function in a power-hungry mode (constantly
converting analog signals). In addition, the power supply has to deal with the requirements of the
XBee module (~50mA), the excitation of the bridges (~10mA / each), and driving LEDs
(~10mA/each). To enable a power supply as low as 4.5V, a low dropout voltage (LDO) regulator

needs to be chosen. Unfortunately, as a rule of thumb, the more current a regulator can
withstand, the higher its dropout voltage. Currently, the regulator employed
(AME8815AEGT330Z) [1] can supply as much as 1.5A with a dropout voltage of around 0.6V,
thus an operation from 4V may be possible. The regulator is protected by a schottky-diode to
ensure that its input never goes way below its output (e.g., due to transients when unplugging
power). The input and output of the regulator are buffered by elcaps (electrolytic capacitors) as
well as ceramic capacitors (due to the elcaps’ high frequency behavior).

4.1.15. Bridge Excitement
Currently the ADC66 uses the same 3.3V power to excite the Wheatstone-bridges on its RJ45

outputs as it is using for all other circuitry. As load cells have a typical 3mV/V resolution at
maximum physical load (i.e., if fully loaded they will output about 9.9mV at 3.3V excitation),
the precision of their output greatly depends on the stability of the excitation. It is recommended
that they have their own rail of power (even if it is from the same regulator – as in the schematic)
with high-quality capacitive buffering.

To make readings more precise, a higher excitation voltage may be chosen. The rule of thumb
is to have the average excitation (between positive and negative excitation) around 1.65V
{(V-+V+)/2=1.65}. Thus, at a 20V excitation (where the max output on the bridge may be as high
as 60mV) the excitation potentials need to be: V-=-8.35V and V+=11.65V. High-current, variable
charge pump DC-DC converters such as the MAX629 [4] may be used in such applications.

4.1.16. Analog Filtering
The 2013-s provide a differential input for their AD conversion. In order to filter out

unwanted components of the Wheatstone-bridge signal, and to limit the signal’s bandwidth, a
low pass filter is required. Currently the ADC has a simple one-stage R-C low-pass filter with a
-3dB cutoff at around 1.5kHz (RSF=10kΩ CSF=100nF) on all Wheatstone inputs. It may help
the precision if CSF-s were replaced by 1μF or higher.

It is recommended that filtering components be small SMDs, and that wires from RJ45 inputs
to the ADC inputs of the 2013-s are either protected by ground wires and planes around them, by
shielded cables, or by twisted pairs (currently).

4.1.17. Expanding the System
The ADC66 has been designed to be expandable by more slaves. The expansion connector

should have all necessary signals for and expansion. Additional boards may be attached;
currently the USA demultiplexer has 10 more available ports (see SBUS-OUT), but more
demultiplexers may be added; the number of slaves can be as much as 126. Details on such a
daughterboard can be found in Appendix 5.

If attaching more 2013 slaves, they will need to be connected the same way as existing ones
are, i.e., their pins: 1,6,7,9,10,14 connected to the corresponding pins of the other slaves, and
their pins 11 and 8 connected appropriately to a (new) block of JPTST-s and JPSCL-s.

If actuators need to be driven by digital signals, a slave microcontroller needs to be chosen so
as to have two serial ports (e.g., the MSP430F1611) one to be a slave on the I2C bus and another
to talk to the actuators.

4.1.18. Some Hardware Design Issues
The prototype board has been assembled using breakout boards, legged and SMD passive

components, and PDIP ICs (if available). Wire-wrap wires were soldered and used as rails
between components.

The I2C bus operates at around 50kHz. We have found that glitches on the bus (due to
hardware problems with the microcontrollers) are less likely if the I2C clock is asymmetric
biased significantly toward a high-state.

The 1611 is recommended to have an external crystal for more reliable UART
communication. Currently an 8MHz crystal is used (and the firmware is written accordingly) that
requires 18pF of load capacitance. Since the 1611 requires loads on both XIN and XOUT pins
and these capacitors are viewed as series-connected from the viewpoint of the crystal, (and there
is a ~3pF nominal capacitance of the pins themselves), 33pF loads are used on both pins. As the
breakout board did not allow for a reliable operation of a watch crystal on XT1, this functionality
has been removed (the board’s primary purpose is not to have very-low power consumption
anyway). We recommend the reader to follow up on TI released errata-s to see the many bugs
and workarounds with these microcontrollers. The 1611 has many unused ports, free cycles, and
enough memory to support its own AD conversions.

The 2013s are operating from internal DCO clocks that have a relatively large (but for our
application insignificant) deviation among components. They are set to run at around 20MHz to
avoid timing and glitch problems on their I2C ports. It is speculated that by running them all from
an external 20MHz clock source, their ADC performance would go up, however such design
would have to deal with the EMF of that clock source as well as would have to miss out on one
of the LEDs for display (unless 2-wire Spy-by-wire would be used for programming instead of
the 4-wire JTAG). At this clock with the current oversampling settings and clock dividers, the
2013s can do about 600 conversions a second.

4.2. TB66 Transceiver Board Hardware
The transceiver board (TB66) needs to be connected by USB to the host if the ADC66 is

operating in a wireless mode. The TB66 uses the same USB to serial converter as the ADC66
uses so no additional drivers need to be installed; in fact the host computer will not notice a
difference in communication. The TB66 is depicted in Figure 5 and its schematic can be found in
Appendix 4.

The TB66 is a very simple board containing three major parts: the USB to serial converter to
talk to the radio (XBee) module, the XBee module, and a power regulator for the XBee board to
be supplied from the USB (as the 3.3Vout option of the USB to serial converter cannot supply
enough current for the XBee to operate). The TB66 may also be used for initial programming of
XBee modules from a host and thus should have appropriate (2mm spacing) sockets so XBee
modules can be replaced. There is a reset button to reset the XBee module if needed.

Figure 5. The TBA66 board.

4.2.1. XBee Transceiver Module
The XBee transceiver module is manufactured by MaxStream Wireless [5]. It provides a

programmable, off-the-shelf serial to 2.4GHz wireless (802.15.4 compliant) interface. When the
module is shipped it is configured to default factory settings which need to be changed for it to
operate in the TB66 and ADC66. Detailed instructions to the XBee module can be found in [5].

The default settings of the XBee module are to operate at 9.6kbaud with 8-N-1. If a new XBee
module needs to be programmed, it should be placed into the TB66 board, and then the TB66
needs to be connected to a host. A Hyperterminal application (on Windows or similar application
on Linux) can be used to program the XBee module, by opening the appropriate “COM” port
(the one that is recognized as a USB to serial port by the operating system) with the above serial
communication settings.

To enter XBee’s programming mode, three “+” characters have to be sent to it (e.g., by
pressing “+” three times after each other quickly (make sure all other surrounding XBee modules
are turned off). The XBee module will respond with an “OK” message signaling that it has
indeed entered programming mode. Next, the following commands have to be entered relatively
quickly so the module does not time out:
 ATCH0C <CR> (setting the wireless channel of operation)
 ATPL4 <CR> (set power level to maximum – 0dBm)
 ATSM0 <CR> (turn off sleep mode)
 ATRO50 <CR> (set inter-char timing – to avoid retransmission problems)
 ATBD6 <CR> (set baud rate to 57.6k)

After the last command, the Hyperterminal will loose connection to the module. It will need to
be reestablished by restarting Hyperterminal and setting the baud rate to 57.6kbauds. After
setting up a connection to the module again we need to enter the program mode again (three “+”-
s) and then enter the following commands:
 ATWR <CR> (write configuration to flash memory)
 ATCN <CR> (exit command mode)

4.2.2. Power
A low drop-out voltage (LDO) regulator needs to be used to power the XBee module (3.3V)

from the USB (5V) that can supply at least 50mA continuously. In our design we are using a
FAN2504S33X [2] SMD regulator. It is not recommended to use the USB to serial module’s
3.3V supply feature to power the XBee module.

5. Firmware
The firmware for both the 1611 and the 2013-s can be downloaded from [16]. The mspgcc [7]

compiler suite and gnu make utilities have been used to develop the code for the 1611, while
IAR Kickstart from TI [12] has been used to develop code for the 2013 (due to lack of proper
support from mspgcc). There are slight differences between these compilers and how they handle
direct memory writes, interrupt functions and interrupt handlers. The 2013 code contains macros
to enable its compilation with the mspgcc compiler; however such attempt will run out of
memory. As the free version of the Kickstart compiler has a memory limit, the 1611 code has
been developed with mspgcc. For microcontroller programming instructions see Sections 4.1.11
and 4.1.12.

5.1. The 1611 Firmware
The 1611 firmware is spread over 15 files (1 Makefile, 7 header files, and 7 code files). The

code can be compiled by issuing a “make” command. A “make clean” command will remove
most things unnecessary from the build directory and should be used whenever modifying a
header file, before issuing “make”. If using the OLIMEX USB programmer (and assuming that
the programmer files [8] are in the search path), a “make download” command will program the
1611 device. There has been a considerable effort to make the code readable and commented.

5.1.1. The “global” files
The global files contain all global variables (and their definitions in the header file), useful

macros, and global setting macros for the firmware. It also includes general code, such as a pause
routine and functions to decode the (7,4) Hamming code. global.h has a VERBOSE_RESPONSE
macro that can be uncommented to relay human readable responses with each communication
(currently uncommented).

5.1.2. The “init” files
The init files contain all peripheral initialization code for the 1611. These include: disabling

the low-power detection watchdog; setting up the clock to use the crystal; initializing the
software clock with Timer-A (crystal clock divided by 8) mainly used for giving a 50ms heart
rate; setting up USART0 as an I2C master, and USART1 as a UART communication peripheral
at 57.6kbaud, 8-N-1.

1611 ports are also set up here. Port-1 is used to address slaves (thus they are all general
digital outputs). Port-2 is all general digital outputs to drive LEDs. Port-3 has the P3.0 trigger for
the slaves as well as the USART0 and USART1 peripherals. Port-4 connects to the XBee module
for possible control (unused). Ports 5 and 6 are unused.

5.1.3. The “main” files
The main files contain the main execution loop of the firmware. Execution will only exit this

thread of execution when interrupts are being handled. Interrupts interact very heavily (in a
quasi-parallel) manner with the main loop by sharing information over global variables. The
main loop essentially waits for two interrupt handlers to notify it (through global indicator
variables) that “something new has happened”. These two main parts are:

• the handling of the heart-rate, i.e., about every 50ms the main loop (forced by a Timer-
A interrupt interaction) is going to enter an execution thread where output LEDs are
flashed (if enabled). In addition, if there is a periodic slave request, data is polled from
the appropriate slave through I2C (synchronous) and is relayed to the host over the
UART (asynchronous).

• if a new character has been received over the UART from the host (as indicated by a
global variable set by incoming serial interrupts), an execution thread is entered that
tries to parse the incoming serial buffer for a command (a set of characters between
START_FRAME and END_FRAME). If such a command is found then the command
is decoded, the command byte is extracted, the number of parameters is checked, a
response is relayed back to the host, and a corresponding code is executed.

5.1.4. The “interrupts” files
The interrupts files contain all interrupt handlers, i.e., handlers that are automatically invoked:

when a character is received from UART; when the transmission of a character over USART has

been finished; if an event has occurred over the I2C bus; if Timer-A has reached a count up
corresponding to fifty milliseconds (50,000 divided clock hits); or when Timer-A overflows.
More about the behavior of these peripherals is in their respective files.

5.1.5. The “serialin” files
The serialin files contain code that is invoked by a UART character reception interrupt. The

serialin code manages a circular buffer (with a head and a tail pointer), in which data is placed. It
is the main loop’s responsibility to make sure that this buffer is periodically read so as to not
cause an overflow. The serialin files contain functions for handling the incoming serial buffer for
the main loop to read, peek into, or delete entries. The circular behavior is hidden from all other
functions (it is somewhat like a C++ object).

5.1.6. The “serialout” files
The serialout files contain code that manages the output buffer for the UART communication

with the host. Just like serialin, serialout is using a circular buffer in which other code can insert
characters without knowing about its circular structure. serialout is also in charge of encoding all
communications with the (7,4) Huffman code, and has capabilities to easily insert “OK” and
“Error” messages in the buffer. UART serial transmission is asynchronous (non-blocking), i.e.,
threads that are writing to the buffer do not have to (and cannot) wait for the data to be
transmitted. The interrupt handler responsible for UART transmissions will interact with the
transmission buffer (mutuality is, and has to be managed) and if the buffer is not empty, then
transmit the next character.

5.1.7. The “i2c” files
The I2C files together with the appropriate interrupt handler are responsible for managing the

master-receiver and master-transmitter operation of the 1611. The I2C transmitting and receiving
functions are synchronous (blocking), i.e., when calling them the execution has to wait until
bytes are sent or received. To transmit or receive any information (before calling the write or
read functions), global variables have to be set, filling out the number of bytes to be
transmitted/received and the buffer to be transmitted. The write and read functions will block
until the state automaton implemented in the I2C interrupt handlers will release a global variable
signaling either an error condition or a success.

5.2. 2013 Firmware
The 2013 firmware is relatively simple and is contained in a single file. Currently the code is

exhausting all available memory in the 2013. The code is extensively commented.

5.2.1. The main function
First the watchdog (low power reset) is disabled and then the temperature coefficient of the

SDA16 is fixed (see device errata [14]. The DCO clock is set up to operate at its highest
frequency – around 20MHz, and to source the master clock MCL and SMCL. Timer A is set up
to count up with SMCL to 0xFFFF and generate an interrupt when overflowing; this is used to
enable LED flashing.

Port-1 is set up to output VREF on P1.3 (as recommended by TI) while raising edge trigger
interrupt is enabled for P1.4. Port-2 is used to drive LEDs (as it is not used for driving and
reading an external crystal/clock).

The USI (programmable serial interface) is set up for I2C support in slave mode. Next, the
SDA16 is set up to continuously sample on A0 (P1.0 and P1.1) using a built-in 1.2V reference, a

gain of 32 and oversampling 1024 times (see SDA16 documentation for details [15]). Finally,
interrupts are enabled.

In the main loop, first the green LED flashing is taken care of. Depending on whether the
slave address has been set, the countdown variable i will be set, and when zero, the green LED’s
status will be changed (XOR-d). Then we make sure that the ADC is running if we are operating
in a continuous mode or if the number of samples requested is less than the number collected.
Finally, we deal with any new SDA16 obtained result, by adding it to our running average ADC
buffer (and flash the yellow LED). Floating point operations (especially mixing them with
integers) should be avoided as much as possible.

5.2.2. The USI (I2C) Interrupt Handler
Built in I2C support is somewhat limited in the 2013. This interrupt vector will be called

whenever we have transmitted a given amount (USICNT) of bits. To deal with I2C in a proper
manner, a state automaton has to be set up. It may appear strange that we are “sending” NACK
messages although there is no such thing in I2C (keeping the SDA high is not acknowledging
anyway); however this is done to maintain the states of our automaton. The interrupt handler is
also responsible of receiving and interpreting commands as well as assembling a response when
the 1611 is requesting data.

5.2.3. Timer-A Interrupt Handler
Timer-A is used to enable coarse timing mainly used for flashing the green LEDs. It is set to

increment to 0xFFFF after which an overflow occurs, calling this interrupt handler routine. The
handler will set a global variable true (which will be reset in the main loop of main after it has
been processed).

5.2.4. SDA16 Interrupt Handler
This interrupt handler will be called when a new SDA16 result is available. It will copy this

new result in a global variable (and set another global variable) to be processed in the main loop.
After turning on the continuous sampling the first three samples will be thrown away by the 2013
hardware.

5.2.5. Port-1 Interrupt Handler
This interrupt handler is called when Port1.4 of the 2013 is raised (by Port3.0 of the 1611)

thus triggering the 2013 to restart its sampling process. The SD16 will be restarted and the
number of samples set to zero (which will force the running average buffer to be emptied).

6. Simple Visual-C++ Client
A simple Visual-C++ written client is provided [16] in both a compiled and source code form

to test the ADC66. No programming documentation is made available for this client software;
however its operation is simple (using separate threads for the interface and for reading and
writing to the serial port). A sample screen of the client is depicted in Figure 6.

To operate the client, the COM port has to be set (in the lower right corner) and the port
opened (“Connect”). There are fields for displaying raw bytes received, comments, and decoded
data. In addition, there are fields for showing readings from eight slaves, together with a
standard deviation of all values received.

There are preprogrammed fields to send almost all commands to the 1611, or the user can
assemble his own command with up to three parameters (it is important in this case to set the #pr

field). Due to sloppy programming (and bad Visual-C++ conventions) the display fields cannot
be scrolled; however, new information always appears in the top. Fields can be reset by “Reset”.

Figure 6. A simple communications client.

References
[1] AME, Inc., “AME8815 1.5A CMOS LDO,”

http://www.ame.com.tw/English/Datasheet/ame8815.pdf

[2] Fairchild Semiconductor, “Fairchild P/N FAN2504,”
http://www.fairchildsemi.com/pf/FA/FAN2504.html

[3] Future Technologies Devices International Ltd., “FTDI Drivers,”
http://www.ftdichip.com/FTDrivers.htm

[4] Maxim, Inc., “MAX629 28V, Low-power High-Voltage, Boost or Inverting DC-DC
converter,” http://www.maxim-ic.com/quick_view2.cfm/qv_pk/1705

[5] MaxStream, Inc., “XBee ZigBee OEM RF Module,”
http://www.maxstream.net/products/xbee/xbee-oem-rf-module-zigbee.php

[6] Phillips Semiconductor, “The I2C Bus Specification, Version 2.1,” January 2000,
http://www.nxp.com/acrobat_download/literature/9398/39340011_21.pdf

[7] Sourceforge, “mspgcc – GCC toolchain for MSP430,” http://mspgcc.sourceforge.net/

[8] OLIMEX, Ltd., “JTAG-Tiny,” http://www.olimex.com/dev/msp-jtag-tiny.html

[9] OLIMEX, Ltd., “MSP430H1611 Header Board,”
http://www.olimex.com/dev/msp-h1611.html

[10] Texas Instruments, “16-bit Ultra-low-power MCU MSP430F1611,”
http://focus.ti.com/docs/prod/folders/print/msp430f1611.html

[11] Texas Instruments, “16-bit Ultra-low-power MCU MSP430F2013,”
http://focus.ti.com/docs/prod/folders/print/msp430f2013.html

[12] Texas Instruments, “IAR Embedded Workbench Kickstart,”
http://focus.ti.com/docs/toolsw/folders/print/iar-kickstart.html

[13] Texas Instruments, “MSP430 USB Debugging Interface,”
http://focus.ti.com/docs/toolsw/folders/print/msp-fet430uif.html

[14] Texas Instruments, “MSP430F20xx Device Erratasheet,”
http://focus.ti.com/lit/er/slaz026h/slaz026h.pdf

[15] Texas Instruments, “MSP430x2xx Family User’s Guide,”
http://focus.ti.com/lit/ug/slau144c/slau144c.pdf

[16] Záruba, G.V, “Useful Stuff from Gergely Záruba,”
http://crystal.uta.edu/~zaruba/usefulsutff.html

Appendix 1. (7,4) Hamming Coding and Decoding

//Array of codes:
unsigned char HammingCode[16] =
 {
 0x00 , 0x0F , 0x13 , 0x1C ,
 0x25 , 0x2A , 0x36 , 0x39 ,
 0x46 , 0x49 , 0x55 , 0x5A ,
 0x63 , 0x6C , 0x70 , 0x7F };

//coding is simple:
void Convert2Code(unsigned char input)
{

 unsigned char p_low = HammingCode[input & 0x0F];
 unsigned char p_high = HammingCode[(input>>4) & 0x0F];
 SendByte(p_low);
 SendByte(p_high);
}

//decoding is a little more involved
// the first three functions are helper functions , the last one does the
decoding

char CorrectAndDecode(unsigned char code)
{
 unsigned char mask = 1;
 unsigned char n;
 char i;
 for (i = 0; i < 8; i++)
 {
 n = A_CodeToData (code ^ mask);
 if (n != -1)
 // Corrected it!
 return n;
 mask <<= 1;
 }
 // did not work
 return -1;
}

char A_CodeToData (unsigned char code)
{
 char i;
 for (i = 0; i < 16; i++)
 {
 if (code == HammingCode[i])
 {
 return i;
 }
 }
 // Not a code!
 return -1;
}

char CodeToData(unsigned char code)
{
 char n;
 n = A_CodeToData(code);
 if(n != -1)
 return n;
 n = CorrectAndDecode(code);
 return n;
}

int ByteToData(unsigned char low_byte, unsigned char high_byte)
{
 int highval=CodeToData(high_byte);
 int retval=CodeToData(low_byte);
 if((retval==-1)||(highval==-1))
 return -1;
 return(retval+(highval<<4));
}

RA4
100k

JPMRS
2

1

JPT
1-2 or
1-3

2

1

3

3.3V LDO Reg.

AME8815AEGT330Z

2 (tab) GND

1 Vin Vout 3

JPP
1-2 or
1-3

2

1

3

4.5V-8V

e.g., MBR0540T1G

CA2
1000μ
6.3V

MSP430F1611

R
L1

0
33

0

R
L9

33
0

SWM1

33
0

...
...

…

33pF33pF

8MHz (18pF comp)

CA3
1n

JPR
1-2 or
1-3

2

1

3

CA1
100μ
10V

P1.0

P1.7

I2C SCL
I2C SDA

P1 BUS

P3.0 Trigger

R
A2

10
k

R
A

3
10

k
R

A1
56

k

3.3V

GND

JPMIN JPMOUT

JPMT

DC Jack
inner outer

QA1

RL1-
RL8

QL1-
QL8

U2

QL9 QL10

TX
 L

ED

R
X

LE
D

U3

U4

NRL66 ADC Board (pg. 1 of 2)
Gergely Záruba 2007-08 v1.0 R1

RA4
100k

JPMRS
2

1

JPMRS
2

1

JPT
1-2 or
1-3

2

1

3

JPT
1-2 or
1-3

2

1

3

3.3V LDO Reg.

AME8815AEGT330Z

2 (tab) GND

1 Vin Vout 3
3.3V LDO Reg.

AME8815AEGT330Z

2 (tab) GND

1 Vin Vout 3

JPP
1-2 or
1-3

2

1

3

JPP
1-2 or
1-3

2

1

3

4.5V-8V4.5V-8V

e.g., MBR0540T1G

CA2
1000μ
6.3V

MSP430F1611

R
L1

0
33

0
R

L1
0

33
0

R
L9

33
0

SWM1

33
0

33
0

...
...

…

33pF33pF

8MHz (18pF comp)

CA3
1n

JPR
1-2 or
1-3

2

1

3

JPR
1-2 or
1-3

2

1

3

CA1
100μ
10V

P1.0

P1.7

I2C SCL
I2C SDA

P1 BUS

P3.0 Trigger

R
A2

10
k

R
A

3
10

k
R

A1
56

k

3.3V

GND

JPMIN JPMOUT

JPMT

DC Jack
inner outer

QA1

RL1-
RL8

QL1-
QL8

U2

QL9 QL10

TX
 L

ED

R
X

LE
D

U3

U4

NRL66 ADC Board (pg. 1 of 2)
Gergely Záruba 2007-08 v1.0 R1
NRL66 ADC Board (pg. 1 of 2)
Gergely Záruba 2007-08 v1.0 R1

Appendix 2.
NRL66 Schematics

Appendix 3. ADC66 Component Locations

USA

U3

U
S0

U
S1

U
S2

U
S3

U
S4

U
S5

U1

Q2

U2

RA4

RA1
RRSS00
RA2
RA3

RSG1
RSP00 Cx1s are underneath USxsCSG1

underneath US0

CA1

CA2

CA3
USA

U3

U
S0

U
S1

U
S2

U
S3

U
S4

U
S5

U1

Q2

U2

RA4

RA1
RRSS00
RA2
RA3

RSG1
RSP00 Cx1s are underneath USxsCSG1

underneath US0

CA1

CA2

CA3

Appendix 4. TB66 Schematics

RZ1
100k

FAN2504S33X

1 Vin

2 GND

CE 3

BYP 4

Vout 5

e.g., MBR0540T1G

Reset

CZ1
100μ

1n high qty

CZ2
1n

R
Z2

33
0

R
Z3

33
0

TB66 RTX Board (pg. 1 of 1)
Gergely Záruba 2007-08 v1.0 R1

Q
Z2

TX
 L

E
D

Q
Z1

 R
X

LE
D

QZ3

CZ3

UZ2

UΖ1

UZ3

RZ1
100k

FAN2504S33X

1 Vin

2 GND

CE 3

BYP 4

Vout 5

FAN2504S33X

1 Vin

2 GND

CE 3

BYP 4

Vout 5

e.g., MBR0540T1G

Reset

CZ1
100μ

1n high qty

CZ2
1n

R
Z2

33
0

R
Z3

33
0

TB66 RTX Board (pg. 1 of 1)
Gergely Záruba 2007-08 v1.0 R1
TB66 RTX Board (pg. 1 of 1)
Gergely Záruba 2007-08 v1.0 R1

Q
Z2

TX
 L

E
D

Q
Z1

 R
X

LE
D

QZ3

CZ3

UZ2

UΖ1

UZ3

Appendix 5. An ADC66 Daughterboard (DB66)

To extend the ADC66 with eight more ADC slaves, we have developed a piggy-back
daughterboard (DB66) that connects to the ADC66 using the expansion connector. Figure 7
depicts the ADC66 combined with this daughterboard. In this appendix we are going to provide
descriptions, pictures, and slave programming directions to the daughterboard. At the time of this
writing, the RJ-45 connectors of the DB66 remain unconnected as signals to be processed need
to be selected.

ADC66
daughter

ADC66
mother

ADC66
daughter

ADC66
mother

Figure 7. ADC66 with piggy-backed daughterboard.

Programming Slaves on the DB66
Theoretically, slaves should be programmable through the ADC66 board by setting JPTST,

JPSCL, JPDSCL, and JPDTST appropriately; however, it is recommended that when
programming either set of slaves (the ones on the ADC66 or the ones on the DB66) the DB6 to
be disconnected from the ADC66. On the DB66, the SCL and TST jumper blocks have been
replaced by dip switches. During regular operation all JPDSCL switched need to bi in their “on”
posisiont and all JPDTST switches need to be in their “off” position (as depicted in Figure 8).
When programming slaves only one switch in JPDSCL and only one (the correspondingly
numbered) switch in JPDTST can be “on”. JPDSCL1/JPDTST1 will program US6,
JPDSCL2/JPDTST2 will program US7, …, and JPDSCL8/JPDTST8 will program US13. As the
DB66 is disconnected from the ADC66, JPDIN needs to be jumpered (and JPDOUT needs to be
off). JPDB is the JTAG connector (which has the same functionality and connections as JPST).

Connecting Analog Input signals
At the time of this writing it was unclear what signals the new slaves are going to be

processing. Thus their respective inputs have been connected to the ground using a 100nF
capacitor and connected (using twisted pairs) to the unused upper part of the DB66 (as depicted
by IN6-, IN6+, …, IN13-, IN13+ in Figure 9). Additional signal conditioning active or passive
components may be placed here and their inputs connected to RJ6,…,RJ13.

Remarks
The heat sinks on the corners of the ADB66 are only used as distance holders so the board

lays flat when turned upside-down (in its install position). Only the LEDs of RJ6 to RJ13 are
connected, the rest of the pins can be connected as desired. The expansion connector on the
bottom side was manufactured from a floppy-drive cable and when soldered, it switched sides of
pins (see pin1 designation of connector and solder anchor in Figure 9). The schematic to the
DB66 is similar to the schematic of the ADC66 and can be seen in Figure 10.

Figure 8. Top side of DB66.

Figure 9. Bottom side of DB66.

Figure 10. DB66
schematic.

