The University of Texas at Arlington

Lecture 2

CSE 3442/5442 Embedded Systems I

Based heavily on slides by Dr. Roger Walker

Overview of PIC18 Family

- · Class Only web site:
- http://crystal.uta.edu/~zaruba/CSE3442
- 1989, Microchip Technology introduced 8-bit microcontroller called PIC (Peripheral Interface Controller) – see web site at www.Microchip.com
- PIC18F452 Data sheets
- http://www.microchip.com/wwwproducts/Devices .aspx?dDocName=en010296
- PIC18F458
- http://www.microchip.com/wwwproducts/Devices .aspx?dDocName=en010301

Lab Module and Online Book

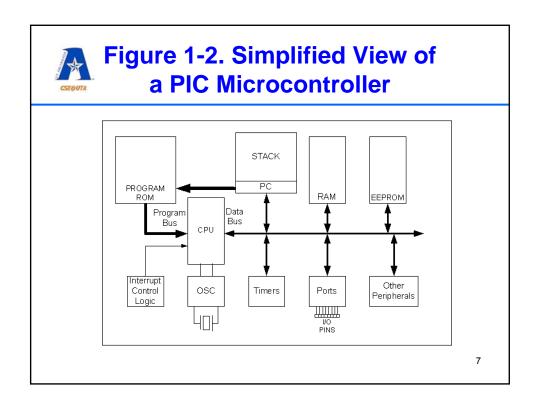
- Book that describes the PIC module used in the lab and other information on the PIC18: http://www.picbook.com/
- Kit used in lab: QwikFlash **Development Kit No. 3 (Expanded Kit** with QwikBreadboard 400 and Stand) http://www.microdesignsinc.com/gwikflash/

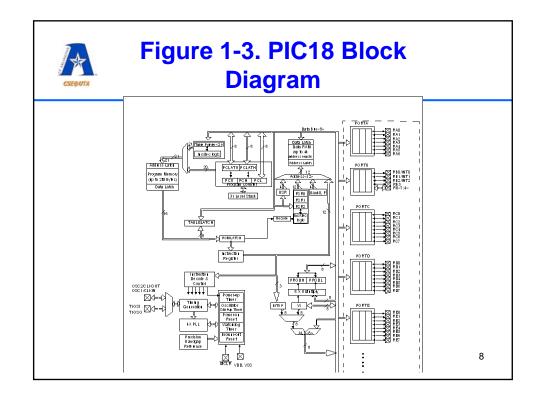
index.htm

8-bit Microchip Families

- Microchip is currently the number one supplier of 8-bit microcontrollers.
- PIC families include 10xxx, 12xxx, 14xxx, 16xxx, 17xxx, and 18xxx.
- PIC families are not upward compatible. All 8-bit processors.
- 12xxx/16xxx have 12-bit & 14-bit instructions
- PIC18xxx have 16-bit instructions

PIC18 family


- PIC18 one of the higher performers of the Microchip's PIC families. There is now both a 32 bit PIC32 family and DSPIC (16 bit) with high performance.
- PIC families come in 18-to 80 pin packages.
- Select family based on performance, footprint, etc., needed, use selection guide: http://www.microchip.com/stellent/idcplg?ldcService=SS GET PAGE&nodeld=2661


5

PIC18 features

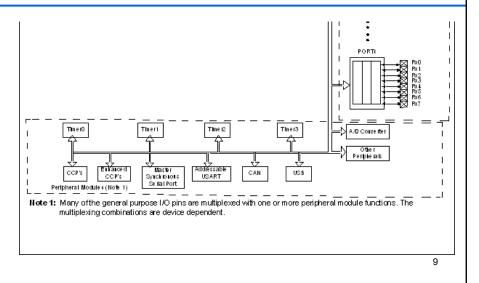

- RISC architecture
- On-chip program ROM, data RAM, data EEPROM, timers, ADC, USART, and I/O Ports
- ROM, data RAM, data EEPROM, and I/O ports sizes varies within PIC18 family

Figure 1-3. PIC18 Block Diagram (continued)

PIC RAM/ROM Components

- ROM program or code ROM (PIC18 can have up to 2 megabytes (2M) of ROM
- UV-EPROM for program memory
 must have UV-EPROM eraser/programmer
 (burner ~20 minutes to erase)
- Flash memory PIC18<u>F</u>458 use for program development (EEPROM – electrically erasable PROM) – use PICkit 2 (from Microchip) using USB and PC.

PIC Components cont.

- OTP version of PIC one time programmable (ROM) versions available from Microchip (PIC16C452) – use for final production version – programmed at Microchip
- Masked versions of PIC Provides a means of chip fabrication with program built in – minimum order but cost per IC cheapest of all methods.

11

PIC Components cont.

- I/O Pins 16 to 72 pins dedicated for I/O.
 PIC18 has 18 to 80.
- PIC18F8772 72 pins available for I/O.
- Other 8-bit microcontrollers besides the PIC, 8051 (Intel), 68HC11 (Motorola), Z8 (Zilog).

Chapter 2 PIC Architecture & Assembly Language Programming

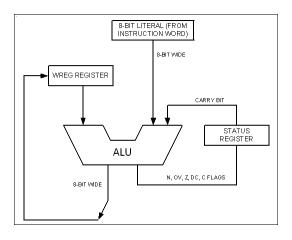
 WREG – 8 bit register in PIC (Working Register) – used the most

MOVLW K

Move ("MOV") the number ("L" for "literal") K (example 0xA), or 10H in decimal) - into the working register ("W").

That is, load W with the value 0xA

13



Moving to WREG

- MOVLW K ; move literal value K into WREG
- Once again K is an 8 value 0-255 decimal or 00-FF in hex
- Eg.
- MOVLW 25H ; move 25H into WREG (WREG = 25H)

Figure 2-1. PIC WREG and ALU Using Literal Value

15

Move and Add Instructions

- MOVLW 12H ;load value 12H -> WREG
- ADDLW 16H; add 16H to WREG
- ADDLW 11H; add 11H to WREG
- ADDLW 43H ;add 43H to WREG

FILE REGISTER

- File Register (data RAM) read/write memory used by CPU (varies from 32 bytes to .. depending on chip size (family)
- Divided into two sections
 - Special Purpose Registers (SFR)
 - General Purpose Registers (GPR) or (GP RAM)

17

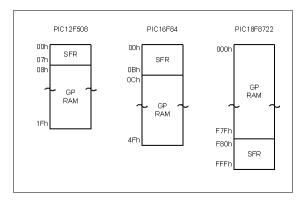
FILE REGISTER cont.

- SFR specific functions
 - ALU status
 - Timers
 - Serial communications
 - I/O Ports
 - -A/D

Example: the more timers the more SFR in a PIC

FILE REGISTER - cont.

 GPR – The general-purpose registers – RAM locations used for data storage and scratch pad (8-bit) (data RAM size same as GFR size)

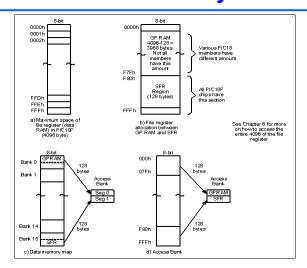

GPR varies between families, see Table 2-1, pp 44 Example:

PIC12F508 32bytes SFR – 7 bytes, GPR – 25 bytes PIC 18F452 1792 bytes SFR – 256, GPR - 1536

19

Figure 2-2. File Registers of PIC12, PIC16, and PIC18

File Registers, cont.


- Access bank in the PIC18
- PIC File Register has a max of 4K or: 000-FFFH

Divided into 16 banks of 256 bytes. All PIC's have at least one bank – the access bank. The access bank divided into 2 sections of 128 bytes, SFR and GPR 00H – 7FH GPR, F80H – FFFH SFR (accessed directly

21

Figure 2-3. File Register for PIC18 Family

Special Function Registers of the PIC18 Family.

F80h	PORTA	F AOh	PIE2	F COh	FE0h	BSR
F81h	PORTB	FA1h	PIR2	FC1h ADCON1	FE1h	FSR1L
F82h	PORTC	FA2h	IPR2	FC2h ADCONO	FE2h	F SR 1H
F83h	PORTD	FA3h		FC3h ADRESL	FE3h	PLUSW1
F84h	PORTE	F.A4h		FC4h ADRESH	FE4h	PREINC1
F85h		FA5h		FC5h SSPC ON2	FE5h	POSTDEC:
F86h		F.A6h		FC6h SSPC ON1	FE6h	POSTINC1
F87h		FA7h		FC7h SSPSTAT	FE7h	IND F1
F88h		FA8h		FC8h SSPADD	FE8h	WREG
F89h	LATA	F.A9h		FC9h SSPBUF	FE9h	FSROL
F8Ah	LATB	FAAh		FCAh T2CON	FEAh	FSROH
F8Bh	LATC	FABh	RCSTA	FCBh PR2	FEBh	PLUSWO
F8Ch	LATD	FACh	TXSTA	FCCh TMR2	FECh	PREINCO
F8Dh	LATE	FADh	TXREG	FCDh T1CON	FEDh	POSTDEC
F8Eh		FAEh	RCREG	FCEh TMR1L	FEEh	POSTINCO
F8Fh		FAFh	SPBRG	FCFh TMR1H	FEFh	IND FO
F90h		F BOh		FDOh RCON	F F Oh	INTCONS
F91h		FB1h	T3C ON	FD1h WDTCON	FF1h	INTCON2
F92h	TRISA	FB2h	TMR3L	FD2h LVDCON	FF2h	INTCON
F93h	TRISB	F B3h	TMR3H	FD3h OSCCON	F F3h	PRODL
F94h	TRISC	FB4h		F D4h	FF4h	PRODH
F95h	TRISD	FB5h		FD5h TOCON	FF5h	TABLAT
F96h	TRISE	FB6h		FD6h TMROL	F F6h	TBLPTRL
F97h		F 87 h		FD7h TMR0H	F F7h	TBLPTRH
F98h		F B8 h		FD8h STATUS	F F8h	TBLPTRU
F99h		FB9h		FD9h FSR2L	F F9h	PCL
F9Ah		FBAh	CCP2CON	FDAh FSR2H	FFAh	PCLATH
F9Bh		FBBh	CCPR2L	FDBh PLUSW2	* FFBh	PCLATU
F9Ch		FBCh	CC PR2H	FDCh PREINC2	* FFCh	STKPTR
F9Dh	PIE1	FBDh	CCP1CON	FDDh POSTDEC2	* FFDh	TOSL
F9Eh	PIR1	FBEh	CCPR1L	FDEh POSTINC2	* FFEh	TOSH
F9Fh	IPR1	FBFh	CC PR 1H	FDFh INDF2	* FFFh	TOSU

Figure 2-4.

23

PIC18 File Register and Access Bank

- Bank switching required (as only 256 bytes are addressable) in File Registers if using more than 256 bytes:
- MOV WF used to copy from work register into file register:

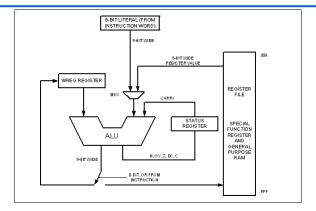
- MOVLW 12H ; 12H -> WREG

- MOVWF 16H ; (WREG) -> File Register 16H

WREG and Access Bank Instructions

ADDWF fileReg, D

Contents of WREG added to contents of fileReg. If D = 0, result placed in WREG If D = 1, result placed in fileReg


e.g., **ADDWF 16H, 0**; add the value contained in F-16H to the value of W (thus store in W).

e.g., **ADDWF 16H, 1**; add the value contained in W to the value of F-16H (thus store in F-16H)

25

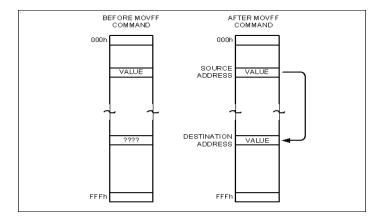
Figure 2-5. WREG, fileReg, and ALU in PIC18

ALU Instructions WREG & fileReg (Table 2-2)

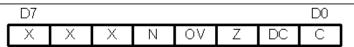
- ADDWF fileReg, d ;ADD WREG & fileReg
- ADDWFC fileReg, d ;ADD WREG & fileReg w/ Carry

•

 XORWF fileReg, d ;Exclusive-OR WREF w/ fileReg


See Table 2-3 (pp 53) for more Instructions using fileReg and WREG.

27


Figure 2-6. Moving Data Directly Among the fileReg Locations

MOVF FileRegS, FileRegD

Bits of Status Register

C - Carry flag

DC - Digital Carry flag

Z - Zero flag

OV - Overflow flag

N - Negative flag

X – D5, D6, and D7 are not implemented, and reserved for future use.

Figure 2-7

29

Flags Affected Following Execution of Most Instructions

- See Table 2-4. on page 60
- ADDLW can affect C, DC, Z, OV N
- ANDLW can affect Z
- MOVF can affect Z
- Move instructions (except for MOVF) will not affect any status bits

ADDLW Example

- MOVLW 38H
- ADDLW 2FH

```
38H 0011 1000
+2FH 0010 1111
```

67H 0110 0111 WREG = 67H

C = 0 no carry out from bit 7

DC = 1 carry out from bit 3

Z = 0 WREG has value other than zero after addition

31

ADDLW Example cont.

- MOVLW 9CH
- ADDLW 64H

9CH 1001 1100 +64H 0110 0100

100H 0000 0000 WREG = 00H

C = 1 carry out from bit 7 DC = 1 carry out from bit 3

Z = 1 WREG has value of zero after addition

Flag Bits used in Branching

• BC Branch if C = 1Branch if C ≠ 1 • BNC

 BZ Branch if Z = 1

Branch if $Z \neq 1$ • BNZ

 BN Branch if N = 1

• BNC Branch if N ≠ 1

Branch if OV = 1BOV

 BNOV Branch if OV ≠ 1

Assignment for Next Class

- Finish Reading Chapter 0-2
- Download MPLAB and C18
 - Link for MPLAB IDE

http://www.microchip.com/stellent/idcplg?IdcSer vice=SS GET PAGE&nodeId=1406&dDocNa me=en019469&part=SW007002

- Link for C18

http://www.microchip.com/stellent/idcplg?IdcSer vice=SS GET PAGE&nodeId=1406&dDocNa me=en010014