The University of Texas at Arlington

Lecture 5
PIC I/O

S
~
<
J
~ if
~N
R
<
~N
)

CSE@UTA

CSE 3442/5442
Embedded Systems |

Based heavily on slides by Dr. Roger Walker

Chapter 4 — PIC 1/0 PORT
PROGRAMMING

» Ports are not only used for simple /O, but
also can be used other functions such as
ADC, timers, interrupts, and serial
communication pins. The following figure
(Figure 4-1) shows the alternate functions
for the PIC18F458 pins.

Figure 4-1 PICF458 Pin
Diagram

40 PIN DIP
MCLRNpp 1 \ J 40 RB7/PGD
RANAND/Cyrer &2 39 RBE/PGC
RA1/ANT 3 38 RBS/PGM
rRaziaN2veer. o4 PIC18F458 37 RB4
RAS/ANSNrers €5 36 RBI/CANRX
RA4/TOCK o6 35 RB/CANTXANT2
RAS/ANA/SS/LVDIN 7 34 RB1ANTI
REO/ANS/RD o8 33 RBOANTO
RE1/ANGAWR/C1IOUT 9 32 Voo
RE2/ANT/CS/C20UT 10 3P Vs
Voo 11 30 RD¥/PSP7/P1D
Ve €12 29 RD6/PSPE/P1C
OSC1/CLKI 13 28 RD5/PSP5/P1B
OSC2/CLKO/RAE 14 27 RD4/PSP4/ECCP 1P 1A
RCO/T10SO/TICLKI 15 26 RC7/RX/DT
RC1/T105 16 25 RCE/TX/ICK
RC2/CCP1 17 243 RCS5/SDO
RC3/SCK/SCL 18 23 RC4/SDI/SDA
RDO/PSPO/CTIN+ 19 22 RD3/PSP3/C2IN-
RD1/PSP1/C1IN- 20 21 RD2/PSP2/C2IN+

g PIC18F458/452 (40 Pins) has §
»4 ports, other Family Members Can
Have More or Less Number

Table 4-1: Number of Ports in PIC18 Family Members

Pins 18-pin 28-pin 40-pin 64-pin 80-pin

Chip PIC18F1220 PIC18F2220 PIC18F458 PIC18F6525 PIC18F8525

Port A X X

>

Port B X X

Port C X

Port D

Skl taitalls

Port E

Port F

Port G

Port H

itaitelteltellaitaltalle

Port J

Port K

PP PP PR PR R PR <

Port L

Note: X indicates that the port is available.

Number of Individual Port Pins

* For example, for the PIC18F458, Port A
has 7 pins; Ports B, C, and D each have 8
pins; and Port E has only 3 pins.

« Each port has three SFRs associated with
it. -- PORTX, TRISx (TRIState), and LATX
(LATch).

Using PIC18F458 A-E Ports for
Input/Output

« Each of the Ports A-E in the PIC18F458
can be used for input or output. The TRISX
SFR is used solely for the purpose of
making a given port an input or output
port. To make a port an output, write Os to
the TRISx register. Or, to output data to
any of the pins of the Port B, first put Os
into the TRISB register to make it an
output port. Then send the data to the Port
B SFR itself.

Addresses of SFR, PORTXx, TRISx
(TRIState), and LATx (LATch).

e See Table 4-2
« PORTA F80H
« PORTB F81H

* TRISA FO2H

Example Using Port A as Input

In order to make all the bits of Port A an input, TRISA must
be programmed by writing 1 to all the bits. In the code
below, Port A is configured first as an input port by
writing all 1 s to register TRISA, and then data is
received from Port A and saved in some RAM location of
the file registers:

MYREG EQU 0X20 ;Program location (RAM)
MOVLW B‘11111111’ :All 1" s to WREG
MOVWEF TRISA ;Port A as input port (1 for In)
MOVF PORTA,W ;move from filereg of Port A to WREG
MOVWF MYREG ;save in fileReg of MYREG

™

Read After Write

Need to
add NOP
between
read from
port and
write to
port, or
use 4 byte
MOVFF
Instruction

| Fetch1 |D|R|P |w|

Timeis

|1 too short
| 4

[Fetch2 [D[R]F W]

INSTRUCTION

MOVF PORTC W ;Read PORTC into WREG

MOMVAF PORTB Write WREG to PORTB

The RAYW (Read — After —White) for two consecutive ingdrudions.

| Fetch1 JD|R|P |w|

| Fetch2 JD|N|N]N l

Fetch3 |D [R]F [W]

INSTRUCTION

MOWF PORTC W

MNOP
MOMNF PORTB

;Bubble in Pipeline

N = No Operation

D = Decode the ingrudtion

R = Read the operand

P = Process

W = White the result to destination register

Register bit manipulation

Bit set flag BSF filereg, bit
Bit clear flag BCF filereg, bit
Bit toggle flag BTF filereg, bit

Bit test filereg skip next instruction if clear
BTFSC filereg, bit

Bit test filereg skip next instruction if set BTFSS
filereg, bit

Work for all file registers but especially helpful
for PortA(RAO-RAS), PortB, PortC, PortD, and
PortE(REO-RE2)

10

Read-Modify-Write

COE@UTA

Any instruction which performs a write operation actually does a
read followed by a write operation. The BCF and BSF instructions,
for example, read the register into the CPU, execute the bit
operation, and write the result back to the register. Caution must be
used when these instructions are applied to a port with both inputs
and outputs defined.

For example, a BSF operation on bit5 of PORTB will cause all eight
bits of PORTB to be read into the CPU. Then the BSF operation
takes place on bit5 and PORTB is written to the output latches. If
another bit of PORTB is used as a bi-directional 1/0O pin (e.g., bit0)
and it is defined as an input at this time, the input signal present on
the pin itself would be read into the CPU and rewritten to the data
latch of this particular pin, overwriting the previous content. As long
as the pin stays in the input mode, no problem occurs. However, if
bit0 is switched to an output, the content of the data latch may now
be unknown.

The LATX registers could/should be used in this case.

11

N CSEQUTA W PORT VS LATCH

« The differences between the PORT and LAT registers can be
summarized as follows:

« A write to the PORTXx register writes the data value to the port
latch.

« A write to the LATX register writes the data value to the port latch.

 Aread of the PORTXx register reads the data value on the I/O pin.

« Aread of the LATx register reads the data value held in the port
latch.

12

Fan-out

Current can flow in (pin at 0 level) and out (pin at 1 level)
of port pins.

This current is limited by the design of the IC.

For PIC18 pins can drain a total of 8.5mA and source a
total of 3mA.

Fan-out is really the number of logic gates a pin can
drive but is closely connected to the total current of pins.
(total current / current drained by the input of the next
logic gates)

13

Working with 1/O Ports Using C

COE@UTA

#include <p18F452.h>
void main(void)
{
unsigned char mybyte;
TRISC =0b11111111; //PORTC is input
TRISB = 0b00000000; //PORTB is output
TRISD = 0b00000000; //PORTD is output
while(1)
{
mybyte = PORTC; //load the value of PORTC
if(mybyte < 100)
PORTB = mybyte; //send itto PORTB is it is less than 100

else
PORTD = mybyte; //otherwise, send to PORTD

}
//don’ t forget linker script and library settings in MPLAB!

Example 7-11
14

#4 Working with I/O ports using C

* Lab example:

— Read the numbers using the example shown
In the previous slide.

— Do arithmetic manipulation on the input

— Convert the output into decimal value to
display.

15

Example 7-14 pp 263

Example 7-14

A door sensor is connected to the RB1 pin, and a buzzer is connected to RC7. Write a
C18 program to monitor the door sensor, and when it opens, sound the buzzer. You can
sound the buzzer by sending a square wave of a few hundred Hz frequency to it.

Solution:

#include <P18F458.h>
void MSDelay (unsigned int) ;
#define Dsensor PORTBbits.RB1
#define buzzer PORTCbits.RC7
void main (void)
{
TRISBbits.TRISB1l = 1; //PORTB.1 as an input
TRISCbits . TRISC7 =:0; //make PORTC.7 an output

while (Dsensor == 1)
{
buzzer = 0;
MSDelay (200) ;
buzzer =
MSDelay (

}

while (1) ; //stay here forever

}

void MSDelay (unsigned int itime)
{
unsigned int i;
unsigned char j;
for(i=0;i<itime;i++)
for(3=0;3<165:j++) ;

2

16

Logic Analyzer for Ex. 7-14

rﬁwg‘c“namer R — S ,.

- Trigger Position Trigger PC = ; . - Time Base Made
Start (%) Center (O End (| [Mow H Clear] \Cyc |l Simple
[Fa]_ala] Chid sl@isin]

RE1

RC?

I T T T T I I T I T I I T T T | I T T T [I T T T I T T T T

0o 5000.0 10000.0 15000.0 20000.0 25000.0 30000.0

Figure 7-6. MPLAB Logic Analyzer for Example 7-14

