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Abstract This paper describes research towards a system
for locating wireless nodes in a home environment requiring
merely a single access point. The only sensor reading used for
the location estimation is the received signal strength indica-
tion (RSSI) as given by an RF interface, e.g., Wi-Fi. Wireless
signal strength maps for the positioning filter are obtained by
a two-step parametric and measurement driven ray-tracing
approach to account for absorption and reflection charac-
teristics of various obstacles. Location estimates are then
computed using Bayesian filtering on sample sets derived
by Monte Carlo sampling. We outline the research leading
to the system and provide location performance metrics us-
ing trace-driven simulations and real-life experiments. Our
results and real-life walk-troughs indicate that RSSI read-
ings from a single access point in an indoor environment
are sufficient to derive good location estimates of users with
sub-room precision.
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1. Introduction and motivation

The globally pervasive computing environments [29] of the
future with their large number of heterogeneous, mobile
computing nodes pose many challenges but also offer un-
precedented opportunities. In such environments, sensors
and other computational nodes are omnipresent while peo-
ple may carry a large numbers of small, connected devices
that permit communication and computation at any point
in time. However, to harvest the power of such comput-
ing environments it is necessary that computing nodes are
context-aware, i.e., that they are able to adjust their operation
to the particular context in which they currently operate. An
important part of context-awareness is location-awareness
[3,13], where nodes are enabled to obtain estimates of their
physical location, thus tailoring the physical environment
and its software representation to the user. Overall, in perva-
sive computing the more information is available about the
local environment of users and computing entities the better
the applications can adapt to the user. Thus, we argue that es-
timating location via various sensor readings is an important
enabler of pervasive computing.

Location aware computing has a bright future in the fields
of personal navigation, personal security, prompt healthcare
and entertainment. Furthermore, information on the physi-
cal location of mobile nodes can greatly help in urban search
and rescue missions, as well as enable geographical routing
in ad hoc multi-hop networks. The determination of physi-
cal location is sometimes referred to as location estimation,
location identification, localization, positioning or geoloca-
tion identification. Recent projects and interest in intelligent
home environments such as [5] require the environment to
know the whereabouts of the inhabitants in order to adapt the
environment to them. In this paper we restrict ourselves to
indoor localization, more precisely to in-home localization
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(without loosing the generality to apply our results to any
indoor environment).

Due to the fact that networked mobile users are enabled
with wireless radio communication network interfaces (such
as Wi-Fi), protocols that provide location estimation based
on the received signal strength indication (RSSI) of wireless
access points are becoming more-and-more popular, precise,
and sophisticated. The main benefit of RSSI measurement
based systems is that they do not require any additional
sensor/actuator infrastructure but use already available com-
munication parameters and downloadable wireless maps for
the position determination.

The work we are presenting relies only on received signal
strength measurements from wireless radio access points
to determine the location of users. The major contribution
of our paper is to show that good results can be achieved
with readings from a single access point. This is in contrast
to previous works where at least three access points were
required to localize users inside office buildings restricted to
the corridors of these buildings.

1.1. Localization techniques

The best-known location determination system is the Global
Positioning System (GPS) [8]. A GPS receiver can estimate
its location by measuring the propagation time of GHz range
radio signals from several satellites to the receiver. Although,
after the recent liberalization of GPS the precision of the ob-
tained GPS position is quite accurate (down to a meter), GPS
receivers need to have line-of-sight to at least three or four
satellites in the sky. This restriction of GPS prohibits/restricts
its use in dense urban environments, indoors, and in areas
with tall and dense vegetation where line of sight to the re-
quired number of satellites is not available. Moreover GPS
localization is not reliable in a pervasive computing context,
where small wearable and implanted terminals might be car-
ried in a way that restricts line-of-sight to the GPS satellites.

Although GPS is the widest spread (and global) position-
ing system, there are several other approaches available for
location estimation and even more have been proposed in
the literature. The types of sensors used to obtain the lo-
cation information vary from ultrasonic through photonic
to radio signal strength measurement sensors. Most of the
available and proposed location identification systems rely
on proprietary and deployment-expensive infrastructure and
protocols. Wide area cellular systems use either mobile ter-
minal integrated GPS receivers, or triangulate their posi-
tion based on received signal strengths from several known-
location base stations [18,25]. Since our work is focused
towards the indoor environment we will not revisit outdoor
positioning systems. In the indoor environment, infrared
and laser transmitter/receiver systems [1,28], ultrasonic sen-
sor/actuator systems [21], computer vision systems [7,16],

physical contact [20] and close proximity radio identification
(RFID) sensor [27] based localization systems have been
proposed and built to track mobile users. RSSI based loca-
tion systems [4,17,22,24,31] are becoming more-and-more
precise and sophisticated. Their main benefit is that they do
not require any additional sensor/actuator infrastructure. Yet,
most of the RSSI approaches need readings from at least 3
access points at each location to provide sufficiently accurate
estimates.

In general, RSSI based positioning includes two phases:
(i) the training phase where the wireless map of the envi-
ronment is determined using field measurements and (ii) the
positioning phase where position estimation is performed
based on the wireless map. Note that the training phase is
an offline process and as such only needs to be redone if
there have been major changes to the wireless propagation
environment (e.g., relocation of access points). Let us now
revisit some of the relevant previous approaches to RSSI
based location estimation.

In [18] the authors apply an extended Kalman filter [8] to
RSSI measurements of cellular base-stations. Filtering out
the noise (assumed to be Gaussian noise) they calculate intra-
cell position, movement pattern, and velocity vectors in order
to determine the most probable next cell crossing. Although
[18] considers relatively macro-term outdoor movements, it
was the first major work (to our best knowledge) to apply
statistical methods to RSSI measurements to obtain position
information.

RSSI based measurement techniques can be broadly di-
vided into deterministic and probabilistic techniques. Both
deterministic and probabilistic techniques require a long and
human labor-intensive training phase and provide less preci-
sion than probabilistic techniques.

Deterministic techniques include [2] and [24] where the
location area is subdivided into smaller cells and readings are
taken in these cells from several known access points (the
training phase). In the positioning phase the most likely cell
is selected, i.e., the cell that best fits the current measurement.

Probabilistic positioning techniques include
[4,17,22,24,31] where a probability distribution of the
user’s location is defined over the area of the movement.
The goal of the positioning is to reach a single mode for this
distribution, which is the most likely location of the tracked
user. In [22] the authors establish and train a Bayesian
belief network with a preset number of discretized location
possibilities (cells). The Bayesian network is established
with the a-priori probability distribution of a user being
at a given location and by the conditional probabilities
with which a given RSSI is measured at the location. By
inverting the Bayesian network, they derive the conditional
probabilities (and thus the a-posteriori distribution over
locations) of a user being at the different cells given the
current RSSI reading. The results of this approach show
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a very coarse location determination with a large compu-
tational and memory overhead. In [31], the authors use a
similar Bayesian model except that inversion calculations
are not made for all base-stations, but for only the strongest
subset of them, thus reducing the computational burden.
Both [22] and [31] apply their systems to hallways of office
environments and show relatively reliable positioning with
coarse and predefined resolutions. The model in [24] is a
generalized version of [4] that applies machine learning
techniques to the Bayesian network to increase precision
(which in turn increases the computational burden). In [17]
the authors take the Bayesian approach a step further by
including directions of users in their model, hence sampling
the RSSI measurements not only for different locations but
also for different orientation of the receiving antennas (and
user “obstacles”).

Our work can be categorized as a probabilistic approach.
The main tool and theme throughout this paper will be
Bayesian filtering using Monte Carlo sampling (introduced
in [7]), where the probability distribution of the location of
users is captured, followed, and calculated by sampling. This
method can use an arbitrary a-priori distribution converging
(or “collapsing”) to a single mode of the sampled distribu-
tion. Furthermore, Monte Carlo sampling is not only less
computationally expensive than evaluating Bayesian net-
works but we believe that it can also be easily deployed
in the case where the reference points (the access points) are
mobile themselves. Our approach can be seen as a wireless
counter-part to the sonar and computer vision location sys-
tems introduced in [7]. Furthermore, we establish a frame-
work to enable users to change their orientation, and thus face
an arbitrary direction, similarly to [17]. Section 4.2 shows
simulation results that demonstrate the applicability of such
approach.

1.2. Wireless maps—the training phase

To estimate location from received signal strength readings it
is necessary to have a spatial statistical representation of the
received signal strengths from the surrounding access points.
All the above mentioned RSSI based indoor localization
approaches rely on a long “training” phase where the entire
target area is measured with some spatial precision. This
precision will in turn have a great impact on the precision of
the location estimate.

However, such data collection/measurement requires sig-
nificant human labor (and the target area needs to be re-
measured every time a new access point is introduced or in
general whenever the wireless propagation properties may
change). Often, it would be preferable to be able to use a
simple model of the environment to determine a model for
the signal strength’s distribution. A number of such mod-
eling techniques have been devised for managed wireless

networks in office environments. In [11] the authors evaluate
ray-tracing techniques that are used to derive indoor propaga-
tion models while in [12] a statistical approach is introduced
that builds a wireless map based on statistical properties of
rooms and the area. The authors in [12] claim that the sta-
tistical approach has an error of less than 3 dB compared
to measured values. The ray-tracing approaches provide an
even better model but come with a larger computational com-
plexity. 1 In this paper we are devising a framework based
on RSSI measurement samples infused into ray-tracing to
determine wireless signal strength maps.

1.3. Sequential Monte Carlo sampling

Probabilistic approaches to mobile node localization from
RSSI measurements rely on the precise estimation of a pos-
terior probability distribution, p(st | d1, . . . , dt ), of the like-
lihood of the node’s state (location), st, given a history of
the received measurements, d1, . . . , dt . The goal here is to
derive a representation that explicitly deals with missing
information about the motion of the mobile node and the un-
certainty present in the measurement data. The main prob-
lem when using such probabilistic representations and the
corresponding estimation algorithms is that they can be pro-
hibitively complex if no simple, parametric representation
of the uncertainty is available. As a result, most existing
approaches to localization using RSSI measurements rely
either on the discretization of space into a small number of
regions of interest [2 ,12,24,31] or an unrealistic model of
the uncertainty of the measurements [18,24]. An example
of the latter can be seen in Kalman filter-based approaches
where an assumption has to be made that the probability
distribution for the locations as well as for the measurement
error model are Gaussian. However, in the presence of highly
ambiguous measurements such as RSSI readings in indoor
environments, these distributions are generally multi-modal,
indicating the existence of multiple possible positions for the
node and for multiple locations that match a particular set
of RSSI readings. Since Kalman filters can estimate only the
mean of the posterior distribution, in a situation where a user
could with high probability be at one of two locations that
are distant from each other, the Kalman filter’s estimate may
be the Euclidian mean of those two location, thus absolutely
wrong.

In recent years, Monte Carlo sampling-based techniques
for the estimation of probability distributions have been de-
veloped [6,7,10] and applied to different problems includ-
ing visual target tracking [14] and mobile robot localiza-
tion using laser range finder or sonar data [7,26]. In these

1 If access points are static, the radio-wave ray-tracing is an offline
process, i.e., it can be run prior to the localization, thus its computational
complexity is not a major issue.
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simulation-based techniques, empirical probability distri-
butions, pN(s), are represented by a set of N weighted,
random samples, {(s(i), w(i)) | i ∈ [1, N]} as pN (s) =∑N

i=1 w(i)δs(i) (s), where w(i) is the weight of sample s(i) and
δs(i) (s) = δs(i) (s − s(i)) denotes the Dirac delta function. This
distribution approximates the actual probability distribution,
p(s), as

∫ s2
s1 p(s)ds ≈ ∫ s2

s1 pN (s)ds = ∑

s(i)∈[s1,s2]
w(i).

As a result, Monte Carlo sampling-based techniques can
be used to represent arbitrary probability distributions as long
as the number of samples is sufficiently high. Calculations
of posterior distributions p(s | d) in these techniques (also
referred to as bootstrap or particle filters) are performed by
re-sampling operations on the samples representing the prior
distribution p(s). The computational complexity of these
Monte Carlo techniques is therefore determined directly by
the number of samples used to represent the distribution and
computation time can be traded off against precision in a
straightforward manner by modifying the number of sam-
ples used. As a result, even nodes with minimum computa-
tion power should be able to successfully run the resulting
algorithms, albeit with reduced precision.

The rest of the paper is organized as follows:
Section 2 presents our approach to wireless map calculation.
Section 3 describes our approach to filtering RSSI readings
to obtain location estimates. Section 4 presents simulation
results on our system and provides real-life measurements
and comparisons. Finally, we conclude and introduce future
research directions.

2. Wireless map calculation

This section outlines a five-step approach (including two-
steps of ray-tracing) to calculate wireless signal strength
maps. In the first step a scaled floor-plan with all the walls,
doors, and windows (and other major obstacles) of the en-

vironment is entered. In the second step, a small number
of measurement points are defined and entered in the floor-
plan, and signal-strength measurements are taken at the same
physical locations. Step three witnesses the execution of the
first ray-tracing step to provide a parametric description of
signal strengths at the measurement points (e.g., how many
different obstacles do radio wave rays pass through and/or
reflect off until they reach the measurement points). In step
four the parametric representation of the signal at the mea-
surement points is approximated using the real measurement
values. Step five serves to calculate the wireless map using
ray-tracing again, but this time with the inserted transmis-
sion and reflection properties of the obstacles obtained in the
previous step. In the next subsections all these five steps are
described in more detail.

2.1. Step one: Floor-plan

To obtain a wireless map, the first step is to define the envi-
ronment. This requires measuring the wall, window and door
lengths of rooms as well as identifying major obstacles that
could absorb or reflect the radio signal. In our experiments
we used a 150 square meter floor-plan house, which was al-
ready equipped with a Wi-Fi access point. We have defined
four different obstacle types: brick walls, interior walls, win-
dows and doors. We have used the xfig format [30] due to
its simple design and parametric format to define the floor-
plan. The map is depicted in Fig. 1, where black lines around
the perimeter are brick walls (obstacle type O1), grey lines
around the perimeter are windows (O2), grey lines inside
the house are interior walls (O3) and dark lines inside the
house are doors (O4). Furthermore, the grey square indicates
the location of the access point (in Bedroom 2) while the
scattered small discs represent the measurement points to be
used in the second step. The floor-plan could be enhanced
by adding furniture locations and other objects. This would

Fig. 1 Floor-plan of a house
with measurement points
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increase the complexity of the fourth step because the trans-
mission and reflection parameters for these objects must also
be calculated.

2.2. Step two: Measurement and measurement points

In the second step the user is required to define measurement
points well-spread across the floor-plan (as represented by
the scattered discs in Fig. 1). The number of measurement
points to be defined depends on the number of obstacles in
the floor-plan. To obtain good results, at least twice as many
measurement points are needed as there are obstacle types
(as explained in the next subsection). In our example we
have defined 10 measurement points (8 due to the 4 different
obstacle types and an additional 2 for increased precision).
Note that the more measurement points we define the better
the precision of the final map will be. An average signal
strength reading for each of the measurement points needs to
be taken and recorded. Let us denote the measurement points
by M1. . .Mm, where m is the total number of measurement
points. Furthermore, let us denote the power readings taken
at these measurement points by WM1 . . . WMm .

In our example, several signal strength measurements at
each of the measurement points were taken using an Orinoco
Wi-Fi interface equipped, Linux managed laptop. These
measurements were averaged for each measurement point
and stored for later use. Additionally, we have performed
measurements to obtain no-obstacle one-meter distance sig-
nal strength measurements for the access-point—wireless
network adapter pair to be used as the calibration for step
four; we will denote this measurement by P0.

2.3. Step three: Parametric ray-tracing

In this step we are running a “parametric” ray-tracing algo-
rithm to find the signal strength of the access point at all
the measurement points as a function of the transmission
and reflection parameters of the obstacles. Wi-Fi works at
the 2.4 GHz frequency range, where the radio signal com-
ing off the access point can be approximated with the sum
of single straight-line propagation rays emanating in all di-
rections around the omni-directional antenna of the access
point [11]. If a radio energy beam hits an obstacle, some
portion of the energy of the beam is assumed to be reflected
(bounce) and some portion of the energy is assumed to be
transmitted (let through) by the obstacle. We denote the re-
flection and transmission coefficients of the ith obstacle type
by ROi andTOi respectively, where

(
ROi + TOi

)
< 1. (Thus,

the obstacle is assumed to absorb 1 − (
ROi + TOi

)
portion of

the energy beam going through it). For example, if obstacle-
1 is in the way of a traced radio ray, then it is assumed
to reflect RO1 portion of the energy of the ray, while let-

ting TO1 portion of the same incoming energy propagate
through.

Rays are generated starting from the access point in all
directions but to keep the process computationally feasi-
ble, the direction of the rays has to be discretized between
(0, 2 π ) with a �α precision. Thus, the resulting 2π /�α rays
need to be traced one-by-one sequentially. A ray crossing an
obstacle will cease to exist but will spawn two other rays,
one going on in the same direction (if the perimeter of the
target area is not reached) and the other bouncing back from
the obstacle. Each of these newly spawned rays will inherit
properties from its parent, such as the distance traveled, the
number and type of obstacles it has already been reflected
and transmitted by. Each ray remains in the system until the
total distance traveled by it reaches a pre-defined threshold.
If a ray crosses the area of a measurement point, then its
current parameters (distance traveled, number and type of
different transmissions and reflections) are stored for that
measurement point. Let us denote (i) the different types of
obstacles by O1. . .Ob; (ii) the number of reflections from
these obstacles by r1. . .rb (e.g., ri corresponds to the number
of reflections from obstacle-type i, i.e., Oi); (iii) the number
of transmissions going through obstacles by t1. . .tb (e.g., ti
corresponds to the number of transmissions by obstacle-type
i, i.e., Oi); (iv) and the distance of travel by d. The power-
footprint of a crossing ray at the measurement point is:

P0

d2

b∏

i=1

Rri
Oi

∗
b∏

i=1

T ti
Oi

.

Furthermore, let us denote the number of rays going
through the measurement points by NM1 . . . NMm respec-
tively. Thus, for each of these points we have a polynomial
defining the received signal strength:

PM j =
NM j∑

k=1

(
P0

kd2

b∏

i=1

R
kri
Oi

∗
b∏

i=1

T
k ti
Oi

)

(1)

In Eq. (1), RO1 . . . ROb and TO1 . . . TOb are unknowns to
be determined, and upper-left indices represent ray indexes
for the kth ray (i.e.,kri is the number of reflections the kth ray
had encountered on obstacle-type (i). Thus by the end of the
third step for each measurement point we have a polynomial
representation of the total signal strength.

2.4. Step four: Obstacle parameter determination

The signal strength measurements obtained in the sec-
ond step

(
WM1 . . . WMm

)
can now be used as estimates for

PM1 . . . PMm (i.e.,PM1 − WM1 , . . . , PMm − WMm should all be
close to zero). By looking at Eq. (1) we note that we have
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Fig. 2 Calculated wireless map

2b unknowns. In step-four we will estimate the values of
these unknowns thus finding values for the reflection and
transmission parameters of all obstacle types. In order to be
able to solve the above polynomials for the 2b unknowns,
we need at least m ≥ 2b equations, i.e., m ≥ 2b measurement
points. Due to the coarse modeling of the environment, we
have to also include an error term ei into the measurement.
Then, for all i, where m ≥ i ≥ 1;WMi = PMi + ei . We can
now calculate a least square error estimate for all unknowns
by minimizing the following function F:

F
(
RO1 . . . ROb , TO1 . . . TOb

) =
m∑

j=1

e2
j =

m∑

j=1

(
WM j − PM j

)2

Minimization of function F is a complex problem due
to the number of variables and the order of the individual
polynomials. Thus, to minimize F we employ a heuristic
optimization technique, namely simulated annealing (SA)
[15,19]. With simulated annealing, sub-optimal values for
RO1 . . . ROb , and TO1 . . . TOb can be obtained (thus finding
estimates on how what proportion of the energy reaching
the different obstacle types is reflected or transmitted). Our
SA algorithm takes the polynomial description file generated
in the third step, the measured values for the measurement
points, and P0 (obtained in the second step) as the input and
provides the estimated values for the reflection and transmis-
sion parameters for all defined obstacles.

2.5. Step five: Ray-tracing for wireless power maps

In step five, the actual wireless power map is obtained using
the previously calculated power reflection and transmission
coefficients for the defined obstacles. The first task is to de-
fine the angular precision of the ray-tracing by selecting an
appropriate �α as well as defining the resolution of the wire-
less power map by discretizing the target area into consecu-
tive �s side-sized square cells. The selection of �s has little
impact on the complexity of computation of the ray-tracing
or the localization algorithms. However, �s has an impact

on the precision of the location estimate. The ray-tracing
process is similar to that of the third step with the exception
that radio rays now leave a scalar power level footprint in all
cells they travel through. Figure 2 shows a visualization of
the wireless power map for our sample floor-plan, with �s
= 0.3 m, where a darker cell indicates higher signal strength
(the darkness of cells changes logarithmically in the power
level, since a dB scale is used to represent the values). A
comparison and discussion on the simulated and measured
power levels can be found in Section 4.1.

3. Monte Carlo sampling-based bayesian-filtering

This section describes the basic approach to mobile node
localization from RSSI measurements and introduces four
estimation models that have been implemented and tested.
Our goal is to obtain an estimate of the posterior probability
distribution, p(st | d1, . . . , dt ), of potential states (locations),
st, using the RSSI measurements, d1, . . . , dt, and the wireless
power map introduced in Section 2.

The calculation of the distribution of the user, given the
sequence of RSSI readings is performed recursively using a
Bayes filter:

p(st | d1, . . . , dt )

= p(dt | st , d1, . . . , dt−1) · p(st | d1, . . . , dt−1)

p(dt | d1, . . . , dt−1)

Assuming that the Markov assumption holds, i.e., p(st |
st−1, . . . , s0, dt−1, . . . , d1) = p(st | st−1), the filtering equa-
tion can be transformed into the recursive form:

p(st | d1, . . . , dt )

= p(dt |st ) · ∫
p(st |st−1) · p(st−1|d1, . . . , dt−1)dst−1

p(dt |d1, . . . , dt−1)
,

where p(dt | d1, . . . , dt−1) is a normalization constant. In
the case of the localization of a mobile node from RSSI
measurements, the Markov assumption requires that the state
contains all available information that could assist in pre-
dicting the next state and thus an estimate of the non-random
motion parameters of the node is required as part of the
state description. Starting with an initial, prior probability
distribution, p(s0),2 a system model, p(st | st−1), represent-
ing the motion of the mobile node, and the measurement
model, p(d | s), it is then possible to derive new estimates
of the probability distribution over time, integrating one new

2 A usual initial distribution is a uniform distribution, which means that
the user is equally likely to be located at any part of the house in our
application.
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measurement at a time. Each recursive update of the filter
can be broken into two stages:

Prediction: Use the system model to predict the state dis-
tribution based on previous readings:

p(st |d1, . . . , dt−1)

=
∫

p(st |st−1) · p(st−1|d1, . . . , dt−1)dst−1

Update: Use the measurement model to update the esti-
mate:

p(st |d1, . . . , dt ) = p(dt |st )

p(dt |d1, . . . , dt−1)
p(st |d1, . . . , dt−1)

To address the complexity of the integration step and
the problem of representing and updating a probability
function defined on a continuous state space (which there-
fore has an infinite number of states), the approach pre-
sented here uses a sequential Monte Carlo filter to per-
form Bayesian filtering on a sample representation. As in-
troduced in Section 1.3, a distribution is represented by a
set of weighted random samples and all filtering steps are
performed using Monte Carlo sampling operations. In par-
ticular, the initial sample distribution, pN(s0), is represented
by a set of uniformly distributed samples with equal weights,
{(s(i)

0 , w
(i)
0 ) | i ∈ [1, N ], w(i)

0 = 1/N }, and the filtering steps
are performed as follows:

Prediction: For each sample, (s(i)
t−1, w

(i)
t−1), in the sample

set, randomly generate a replacement sample according to
the system model, p(st | st−1). This result in a new set of
samples corresponding top(st |d1, . . . , dt−1):

{(
s̃(i)

t , w
(i)
t

) ∣
∣ i ∈ [1, N ], w(i)

t = 1/N
}

Update: For each sample, (s̃(i)
t , w

(i)
t ), set the impor-

tance weight to the measurement probability of the ac-
tual measurement, w̃(i)

t = p(dt | s̃(i)
t ). Normalize the weights

such that
∑

i∈[1,N ] η · w̃
(i)
t = 1.0 and draw N random sam-

ples for the sample set {(s̃(i)
t , η · w̃(i)

t )|i ∈ [1, N ]} accord-
ing to the normalized weight distribution. Set the weights
of the new samples to 1/N, resulting in a new set of sam-
ples {(s(i)

t , w
(i)
t ) | i ∈ [1, N ], w(i)

t = 1/N } corresponding to
the posterior distributionp(st | d1, . . . , dt ).

To apply the filter to the problem of mobile node lo-
calization from RSSI measurements, a system model and a
measurement model have to be provided. The latter is here
given by the wireless power map introduced in Section 2 and
the assumption that actual RSSI readings will diverge from
the map according to a Gaussian probability distribution
with a standard deviation of 3 dB. For the system model,

four different motion models have been implemented and
tested in an example environment with a single wireless ac-
cess point and no additional location information. The first
three models assume that the receiving antenna of the en-
tity to be located is always facing the access point (so the
similarly calculated wireless map can be used without mod-
ification), while the fourth model extends the framework to
deal with users that may change their rotational direction
relative to the access point. The following sections intro-
duce the individual movement models and their implica-
tions for the Monte Carlo filter before they are evaluated in
Section 4.

3.1. Simple sequential Monte Carlo filter

The simplest localization algorithm tested here uses a sys-
tem model that assumes that at every point in time, the node
moves with a random velocity drawn from a normal distri-
bution with a mean of 0 m/s and a standard deviation of
1 m/s, vt ∼ N(0, 1). This model corresponds to a random
displacement of the mobile node at every point in time. No
information about the environment is included in this model,
and as a consequence, the filter permits the estimates to move
along arbitrary paths (including ones that move through the
walls). Since this motion model also does not consider any
past motions (i.e., it does not estimate the speed and/or ac-
celeration of the user), the state of the localization filter can
be represented as a vector of the x and y location, s = (xy)T ,
while the measurements d correspond to RSSI measurements
in dB.

3.2. Simple sequential Monte Carlo filter with
boundary information

To model the effects of boundaries and limit the simulated
sample trajectories to physically possible ones, the second
filter uses information about the location of the walls to
modify the Gaussian velocity model by limiting available
choices to velocities that do not lead to collisions with per-
manent obstacles (such as windows or walls). Figure 3 shows
an example for this motion model, which corresponds to a
random displacement limited by the walls. The figure shows
the probability density of moving to a new location within
one time step assuming that the mobile node is located at the
center of the distribution. Dark regions correspond to high
probabilities while light colors represent low displacement
probabilities (dark lines indicate walls).

Similarly to the simplest system model of Section 3.1,
this filter system model uses a two-dimensional state vector,
s = (xy)T , and measurements, d, corresponding to the RSSI
readings.
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Fig. 3 Probabilistic displacement model with wall limitations

3.3. Sequential Monte Carlo filter with internal motion
model

Due to the inertia of a physical node moving in the environ-
ment, the random displacement model used in Section 3.1
might not be sufficiently realistic and a more complex model
was implemented as a third filter. This movement model as-
sumes that nodes tend to move at a constant velocity, i.e.,
have a zero mean acceleration. Thus the model relies on the
previous velocity with a current random acceleration, where
the acceleration is drawn randomly from a normal distribu-
tion with mean 0 m/s2 and a standard deviation of 1 m/s2,
a ∼ N(0 m/s2, 1 m/s2). To permit the use of this model, the
state used in this filter system model has to include an esti-
mate of the current velocity of the mobile node and is thus
a four-dimensional vector consisting of the position and ve-
locity of the mobile node, s = (x y vx vy)T . To address walls,
particles that cross walls in the prediction step of the filter-
ing update are assigned a weight of 0 and are thus discarded
during the re-sampling step at the end of the update step.

3.4. Sequential Monte Carlo filter with internal motion
and rotation model

In the previous three system models an implicit assumption
was made that the user is always facing the access point.
Due to movement trajectories that do not go towards the
access point this assumption is likely not to hold unless
the user exhibits the discipline to indeed always face the
access point. A more appropriate user (and thus filter system)
model would let the user face toward her current velocity
vector, thus toward the direction she is moving. While the
previous model extensions did not induce any change to the
measurement model, allowing users to turn away from the
access point has a definite impact also on the latter.

Looking at the filter system model, an absolute direction
needs to be added that is calculated based on the current
velocity vector of the user, thus s = (x y vxv y φ)T . Similarly
to the last two models, particles crossing permanent obstacles
will have their weight set to 0, thus eliminating them from
the set of valid particles in the measurement step.

The measurement model also needs to be updated by in-
cluding the absolute direction φ of the user. For this a rotation
model needs to be established that determines how much the
difference is between a an RSSI reading taken facing the
access point and a reading facing another direction (denoted
by φ). To obtain such an approximate model we have per-
formed several experiments in the environment at various
locations. In each of these experiments we have continu-
ously taken measurements while turning around the axis of
the receiver’s antenna. The average relative reading of these
measurements is depicted by the solid curve in Fig. 4. (In
our experimental setup the Orinoco card sticks out from the
left-hand side of the laptop, thus turning by 90 degrees will
align the receiver antenna with the access point—resulting
in higher readings.) It can be observed that the measured
relative gain (not surprisingly) somewhat resembles a sin
wave. The dashed line of Fig. 4 shows an empirical inter-
polated sin function S(φ) = 7.5 sin(φ) + 1.2 which is used
in the measurement model as a compensation for the user’s
direction.

4. Performance studies

The goals of our evaluation studies are three-fold: (i) to
validate our ray-tracing based wireless power map with real-
life measurements (Section 4.1); (ii) to simulate a scenario
where a mobile user needs to be tracked using our previ-
ously described filtering methods (Section 4.2); and (iii) to
validate the wireless map generation combined with Monte
Carlo filtering by a real walk-through of the sample house
(Section 4.3).

4.1. Wireless map calculation studies

Our ray-tracing map generation was run with an angular
precision of �α = 2π /360 radians (i.e., with a 1 degree
precision) and square cells of size 0.3 m × 0.3 m cov-
ering the floor-plan of the sample house. We have taken
50 measurements for each of our 10 measurement points
in step 2 of our wireless power map construction tech-
nique and averaged the results (for each measurement point).
The wireless power map was obtained based on the above
assumptions.

To evaluate our calculated power map we have randomly
selected 20 cells (same 0.3 m cell side size) from the floor
plan. At each of these cells we performed another 50 power
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Table 1 Ray-tracing
calculated and measured signal
strength

Random cell 1 2 3 4 5 6 7 8 9 10

Calculated 45.3 37.8 29.5 37.0 47.3 41.4 54.1 38.7 64.9 59.5
Measured 43.8 39.6 28.3 37.2 46.4 40.9 52.0 36.3 62.7 60.0
Square error 2.5 3.3 1.5 0.0 0.8 0.2 4.5 5.5 4.9 0.2
Random cell 11 12 13 14 15 16 17 18 19 20
Calculated 48.7 24.6 30.1 36.1 23.9 16.8 27.4 25.4 36.4 43.1
Measured 46.9 24.2 32.1 33.2 23.2 15.9 28.2 23.1 39.0 41.8
Square error 3.3 0.2 3.8 8.3 0.5 0.8 0.6 5.6 6.5 1.7

level measurements. For each cell, the average and the stan-
dard deviation of the 50 readings were calculated. The mean
measured and calculated values for the 20 random cells
are shown in Table 1. Our measurements show that the
standard deviation of our readings (although being some-
what location dependent), are averaging to around 2 dB,
thus we can safely assume a 3 dB standard deviation for
the measurements in the oncoming sections. To obtain a
single scalar number describing the precision of our ray-
tracing method, we have calculated the square-root of the
mean square difference between the calculated and mea-
sured values to be 1.65 dB. Thus, we can conclude that
our ray-tracing approach provides a sufficiently good es-
timate of the wireless propagation behavior of the sample
house.

4.2. Location estimation simulation studies

To evaluate the particle filtering-based location estimation
approach, we have created a discrete event simulation pro-
gram in C++ that mimics the movement of a user inside the
sample house as the environment. Power level measurement
samples are drawn from the signal map according to the
location of the user assuming a zero-mean Gaussian-noise
model with a standard deviation of 3 dB (see remarks in the

previous section). Power reading samples are taken every
half-second and fed into the Monte Carlo filtering process.
Although particles are expected to be distributed around the
user they do not provide a single point estimate. To obtain
the most likely position of the user we select the particle
that has the most other particles in its radius-R surround-
ing. The movement path of the user can be defined in a text
file by describing to what position in the house she should
move and with what velocity. We have defined a 190 second
long movement path using pedestrian speed (1 m/s) visiting
several rooms of the house as depicted in Fig. 5.

To observe the behavior of the particles we have also
created a graphical interface where the user, the particles,
and the location estimate of the user are displayed after each
sampling step. Figure 6 shows a short sequence of particle
behavior.3 The user and the single point estimate are denoted
with the letters U and E respectively, while the particles are
represented with red (gray) dots or dot-clouds.

We have implemented four different system update mod-
els as described in Section 3. We have run simulations for all
four models to evaluate their location estimates’ precision

3 Due to the obvious limitations of a static media like paper the moving
image of particles cannot be nicely represented. The authors will make
the animation of the filter behavior available at their web-site..
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Fig. 5 Movement path of user
in the sample house

Fig. 6 Particle filtering in progress (U = user; E = single location estimate)

as a function of the number of particles. We measured the
estimates’ precision by calculating the average Euclidian
distance between the user and the location estimate during
the simulations. Figure 7 shows the impact of the number
of particles on the estimates’ precision for the zero-mean
velocity, the wall and door considering normal variant,
the 4-dimensional particle-filtering model, and the internal
rotational model. As we can observe, the wall considering
and the 4D particle models’ estimates come on average as
close as 1 m to the location of the user.

To investigate how the location estimates’ precision varies
over time for a fixed particle number, the deviations between

the actual and estimated location were recorded along the
path of the user. Figures 8–11 show the corresponding graphs
for the wall ignoring, the wall considering, the 4-D, and the
rotational particle models, respectively. In addition, Fig. 12
depicts the rotational error (in (0, π ]) of the user during the
simulation; the mean rotational error was 49 degrees with a
standard deviation of 41 degrees.

Although, as we can observe, the simple zero-mean ve-
locity Gaussian system model performs the worst it still
provides great performance. The wall considering and the
4D particle filter models perform similarly, with the former
having fewer but longer error bursts. All in all the latter two
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Fig. 7 Number of particles vs.
precision of the location
estimate
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Fig. 9 Wall considering model
error vs. simulation time

models rarely (less than 5% of the time and even then only
for a short time) miss the room the user is actually located
in, thus we argue that our location system can be deployed
in a smart environment to locate users.

The internal rotation model draws the RSSI measurement
from a normal distribution where the mean is the stored
value in the power map corresponding to the location of

the user plus S(φ), and the standard deviation is 3 dB. The
figure tells us that the burstiness of errors is higher than for
the other three models. Figures 11 and 12 show high error
peaks at times where the simulated user has abruptly turned
its direction, i.e., when there was a sudden large change in
the velocity vectors and thus in φ. As the velocity vectors
remain constant in the next epochs (and thus the change in φ
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becomes small), the error is again reduced to an acceptable
level. Additional sensors (as outlined in Section 5.1) are
expected to increase the precision of the estimate of the
user’s velocity and provide sub-meter location precisions.

4.3. Location estimation walk-trough studies

Our simulation program has been modified not to obtain
the current RSSI reading from the wireless map but from the
wireless interface (i.e., the Orinoco Wi-Fi card). Determining

the error of the estimation is more problematic in a walk-
through study, since the exact physical location of the user is
hard to resolve. We have taken an approach where a simulated
user (from the same simulation as before) indicates to the
person performing the walk-through where she should be
located. Thus, we can use the same movement paths for
the walk-through as we used for the simulation. The error
obtained during the walk-through thus will contain an error
term that depends on the user’s perception as to where she
should be compared to her actual physical location. The

Springer



Wireless Netw (2007) 13:221–235 233

0

1

2

3

4

5

6

7

0 50 100 150

Time [s]

E
rr

o
r [

m
]

Fig. 13 Distance error vs.
simulation time in a real
walkthrough

system model used for this experiment resembled the model
used in the 4-D experiments. Figure 13 shows the distance
error obtained throughout the walk-through. At around 80 s
when the user goes to the aisle of the house (where the
power map is the most symmetric), the error becomes large
for a longer time but settles down after the user has moved
sufficiently far from the access point (away from the point of
symmetry). A better (less symmetric) selection of the access
point’s location may make this problem less significant. The
average error observed during the walk-trough was 2.1 m.
Other than for the previously mentioned short period and for
very short transients when changing rooms, the estimated
location was always in the same room as the user, thus the
estimate had a sub-room precision.

5. Conclusions

Location awareness for wireless, mobile computing devices
has the potential of being an important enabler of pervasive
or ubiquitous computing, intelligent environments, personal
navigation, personal security, prompt healthcare, and enter-
tainment. Similarly, information on the physical location of
mobile nodes can greatly help in urban search and rescue
missions, as well as enable geographical routing in ad hoc
multi-hop networks. To facilitate location awareness for a
vast number of devices and with minimal cost, it is impor-
tant that localization can be performed using minimal infras-
tructure and with the signals generally available in today’s
networks.

In this paper we presented an approach for localization
that uses only existing RSSI measurements and a map of the
expected wireless power measurements in the environment
to estimate the position of a mobile node equipped with
a wireless network card. To facilitate this we also present
a multi-step technique that permits the construction of the
wireless power map with a significantly reduced require-
ment for actual measurements. As opposed to previous ap-

proaches, the techniques introduced here do not require an
excessively human labor intensive model construction phase
and can operate successfully with minimal infrastructure. To
achieve the latter and to avoid the problems of discretiza-
tion, prohibitive computational complexity, and unrealistic,
uni-modal assumptions about the probabilistic location esti-
mates, we use Monte Carlo filtering techniques to efficiently
estimate the multi-modal distribution of mobile node loca-
tions.

To demonstrate the performance and applicability of the
techniques, experiments were performed in a home environ-
ment with a single access point. First, a wireless power map
was constructed using the presented ray-tracing technique
and compared to the actual readings in the home. This com-
parison showed that the constructed map is within approx-
imately 2 dB of the actual measurements. Using this map,
three movement models were implemented in the Monte
Carlo sampling-based location estimators and simulation
studies were performed to evaluate the precision of the fil-
ters’ estimates for the location of a user that moves within the
home. These experiments showed that the filters were suc-
cessful at estimating the mobile node’s location even though
the available RSSI data from a single access point is highly
ambiguous. It has been demonstrated that even a simple
movement model can produce results with an average pre-
cision around 1 m. To facilitate a more user friendly system
model we have extended the framework to compensate for
situations where the user turns away from the access point.
Our results show that the error of the location estimate does
not significantly increase in such situations.

We have also performed a real-life walk-through of the
house used in our previous examples. Our results indicated
that sub-room precision of the estimates is achievable even
in situations where the divergence from the calculated power
map is more than 3 dB. This illustrates that the presented lo-
calization technique, together with the wireless power map-
ping approach, have the potential to provide location aware-
ness to existing wireless devices without the need for aug-
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mentation of the existing infrastructure. We consider show-
ing that sub-room precision positioning is possible with
RSSI readings from a single access point as our major
contribution.

5.1. Future work

To further improve the performance of the location esti-
mation techniques, a number of possible extensions will be
studied. In particular, more advanced motion models that take
advantage of additional sensors and that integrate Kalman
filtering techniques [8] within the Monte Carlo sampling
framework will be investigated. We are also investigating the
fusion of readings from other sensors in the model, which
would facilitate taking readings not only of the location of the
user but also of it derivatives (velocity, acceleration, jerk);
particularly we are interested to fuse reading from inex-
pensive accelerometers into the model and expect to obtain
sub-meter precision estimates. Another important aspect of
future work is the study of different techniques for the ex-
traction of a location estimate from the distribution. While
the maximum probability region-based approach used in this
paper led to good results, other techniques such as maximum-
likelihood and clustering based on self-organizing maps will
be researched to optimize the precision of the location esti-
mates.
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